PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 2 |

Tytuł artykułu

The effects of physical-chemical water parameters on the Nymphaeion alliance development in northwestern Serbia

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Nymphaeion alliance vegetation is dominant floating-leaved vegetation in the Danube–Tisza–Danube hydrosystem in northwestern Serbia and comprises Nymphaeetum albae, Nymphaeetum albo-luteae, Nymphoidetum peltatae and Trapetum natantis associations. Comparative analysis of physical-chemical water parameters on localities where these – in most parts of Europe endangered and vulnerable stands – develop showed that most phytocenoses are associated with specific habitat conditions. Of the analyzed water properties, the factors that cause Nymphaeion alliance phytocenoses differentiation are primarily pH, alkalinity and COD-MnO4. Formation of the Nymphaeetum albae stands is significantly associated with the highest values of pH, COD-MnO4 and alkalinity, and the lowest nitrate, nitrite, dissolved and the total phosphorus content values, in comparison to the other studied associations. Nymphoidetum peltatae stands develop in waters characterized by the lowest pH and COD-MnO4, low alkalinity, and the highest nitrate and nitrite values in relation to the other analyzed phytocenoses. Trapetum natantis stands, on the other hand, prefer the warmer sections of the canal network, neutral pH, and the highest values of BOD5, dissolved and total phosphorus. Habitat conditions in which Nymphaeetum albo-luteae stands develop are of the widest range in comparison to other investigated phytocenoses.

Wydawca

-

Rocznik

Tom

83

Numer

2

Opis fizyczny

p.103-111,fig.,ref.

Twórcy

autor
  • Faculty of Agriculture, University of Novi Sad, Trg. D. Obradovica 8, Novi Sad, Serbia
  • Faculty of Agriculture, University of Novi Sad, Trg. D. Obradovica 8, Novi Sad, Serbia
autor
  • Faculty of Agriculture, University of Novi Sad, Trg. D. Obradovica 8, Novi Sad, Serbia

Bibliografia

  • 1. Kolada A. The use of aquatic vegetation in lake assessment: testing the sensitivity of macrophyte metrics to anthropogenic pressures andwater quality. Hydrobiologia. 2010;656(1):133–147. http://dx.doi.org/10.1007/s10750-010-0428-z
  • 2. Soó R. A Magyar Flòra ès Vegetàciò Rendszertani-növènyföldrajzi Kèzikönyve I–VI. Budapest: Akadèmiai kiadò; 1964.
  • 3. IUCN red list of threatened species [Internet]. 2013 [cited 2013 Nov 29]; Available from: http://www.iucnredlist.org
  • 4. Radulovic S, Boon PJ, Laketic D, Simonovic P, Puzovic S, Zivkovic M, et al. Preliminary checklists for applying SERCON (system forevaluating rivers for conservation) to rivers in Serbia. Arch Biol Sci.2012;64(3):1037–1056. http://dx.doi.org/10.2298/ABS1203037R
  • 5. Butorac B. Review of aquatic vegetation of the regional park “Stari Begej”. Tiscia. 1995;29:27–32.
  • 6. Szankowski M, Kłosowski S. Habitat conditions of nymphaeid associations in Poland. Hydrobiologia. 1999;415:177–185. http://dx.doi. org/10.1023/A:1003837520267
  • 7. Kočić A, Hengl T, Horvatić J. Water nutrient concentrations in channels in relation to occurrence of aquatic plants: a case study ineastern Croatia. Hydrobiologia. 2008;603(1):253–266. http://dx.doi.org/10.1007/s10750-007-9276-x
  • 8. Jabłońska E, Kłosowski S. Ecology of rare water plant communities in lakes of north-eastern Poland. Acta Soc Bot Pol. 2012;81(1):3–9. http://dx.doi.org/10.5586/asbp.2012.006
  • 9. Balevičienė J, Balevičius A. Qualitative and quantitative parameters of phytocenoses in Lithuanian lakes of different trophic state. Ekologija.2006;2:34–43. http://dx.doi.org/10.6001/ekologija.vi2.1077
  • 10. Pełchaty M. Does nymphaeid distribution reflect the spatial heterogeneity of abiotic conditions in a shallow lake? Belg J Bot.2007;140(1):73–82. http://dx.doi.org/10.2307/20794625
  • 11. Schneider E. Aquatic macrophytes in the Danube Delta – indicators for water quality and habitat parameters. Stud Univ Babes BolyaiBiol. 2009;1:21–31.
  • 12. Steffen K, Becker T, Herr W, Leuschner C. Diversity loss in the macrophyte vegetation of northwest German streams and rivers betweenthe 1950s and 2010. Hydrobiologia. 2013;713(1):1–17. http://dx.doi.org/10.1007/s10750-013-1472-2
  • 13. Bernez I, Daniel H, Haury J, Ferreira MT. Combined effects of environmental factors and regulation on macrophyte vegetation along three rivers in western France. River Res Appl. 2004;20(1):43–59. http://dx.doi.org/10.1002/rra.718
  • 14. O’Hare MT, Baattrup-Pedersen A, Nijboer R, Szoszkiewicz K, Ferreira T. Macrophyte communities of European streams with alteredphysical habitat. Hydrobiologia. 2006;566(1):197–210. http://dx.doi. org/10.1007/s10750-006-0095-2
  • 15. Hrivnak R, Otahelova H, Valachovic M. The relationship between macrophyte vegetation and habitat factors along a middle-size European river. Pol J Ecol. 2007;55(4):717–729.
  • 16. Breugnot E, Dutartre A, Laplace-Treyture C, Haury J. Local distribution of macrophytes and consequences for sampling methods in largerivers. Hydrobiologia. 2008;610(1):13–23. http://dx.doi.org/10.1007/s10750-008-9418-9
  • 17. Grinberga L. Environmental factors influencing the species diversity of macrophytes in middle-sized streams in Latvia. Hydrobiologia. 2010;656(1):233–241. http://dx.doi.org/10.1007/s10750-010-0432-3
  • 18. Hrivnák R, Ot’ahel’ová H, Valachovič M, Pal’ove-Balang P, Kubinská A. Effect of environmental variables on the aquaticmacrophyte composition pattern in streams: a case study fromSlovakia. Fundam Appl Limnol. 2010;177(2):115–124. http://dx.doi.org/10.1127/1863-9135/2010/0177-0115
  • 19. Radulovic S, Laketic D, Vukov D. A riverside tale: assessment of altered habitat effects on macrophyte assemblage on the river Tamiš, Serbia. Arch Biol Sci. 2010;62(4):1163–1174. http://dx.doi.org/10.2298/ ABS1004163R
  • 20. Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF. The interaction between water movement, sediment dynamics and submersedmacrophytes. Hydrobiologia. 2001;444(1–3):71–84. http://dx.doi.org/10.1023/A:1017520800568
  • 21. Džigurski D, Ljevnaić-Mašić B, Nikolić L. Trapetum natantis Müller et Görs 1960 in hydromeliorative facilities in Serbia. Acta Soc Bot Pol. 2013;82(2):125–133. http://dx.doi.org/10.5586/asbp.2013.008
  • 22. Džigurski D, Knežević A, Stojanović S, Nikolić L, Ljevnaić-Mašić B. The vegetation of canal Novi Sad-Savino Selo. Thaiszia. 2010;20:137–145.
  • 23. Szoszkiewicz K, Dawson FH. Relationships of some ecological factors with the associations of vegetation in British rivers. In: CaffreyJ, Barrett PRF, Ferreira MT, Moreira IS, Murphy KJ, WadePM, editors. Biology, ecology and management of aquatic plants.Dordrecht: Springer Netherlands; 1999. p. 117–122. http://dx.doi.org/10.1007/978-94-017-0922-4
  • 24. Dimopoulos P, Sykora KV, Gilissen C, Wiecherink D, Georgiadis T. Vegetation ecology of Kalodiki Fen (NW Greece). Biologia (Bratisl).2005;60(1):69–82.
  • 25. Paillisson JM, Marion L. Can small water level fluctuations affect the biomass of Nymphaea alba in large lakes? Aquat Bot. 2006;84(3):259–266. http://dx.doi.org/10.1016/j.aquabot.2005.10.004
  • 26. Nikolić L, Pajević S, Ljevnaić B. Primary production dynamics of dominant hydrophytes in Lake Provala (Serbia). Cent Eur J Biol.2009;4(2):250–257. http://dx.doi.org/10.2478/s11535-009-0013-5
  • 27. Hrivnák R. Aquatic plant communities in the catchment area of the Ipeľ river in Slovakai and Hungary. Part II. Class Potametea. Thaiszia.2002;12:137–160.
  • 28. European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000: establishing aframework for Community action in the field of water policy. Off JEur Communities. 2000;327:1–72.
  • 29. Hrivnák R, Oťahel’ová H, Jarolímek I. Diversity of aquatic macrophytes in relation to environmental factors in the Slatina river (Slovakia). Biologia (Bratisl). 2006;61(4):413–419. http://dx.doi.org/10.2478/s11756-006-0071-3
  • 30. Ferreira MT, Aguiar FC. Riparian and aquatic vegetation in Mediterranean- type streams (western Iberia). Limnetica. 25(1–2):411–424.
  • 31. Fabris M, Ghetti PF. Application and development of river quality bioindication methods based on macrophytes. In: 4th ECRR conferenceon river restoration Italy, Venice S. Servolo Island 16–21 June2008. Venice: ECRR; 2008.
  • 32. Milošev Ž. Hidrotehnički radovi u Banatu i Bačkoj pre izgradnje hidrosistema Dunav–Tisa–Dunav. Hidrosistem Dunav–Tisa–Dunav, 25 godina kasnije. Novi Sad: JVP Vode Vojvodine; 2002.
  • 33. Braun-Blanquet J. Pflanzensoziologie. 3rd ed. Wien: Springer; 1964.
  • 34. Josifović M, editor. Flora of SR Serbia. Beograd: SANU; 1970. (vol 1–9).
  • 35. Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA, editors. Flora Europaea. Cambridge: Cambridge UniversityPress; 1964. (vol 1).
  • 36. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, et al., editors. Flora Europaea. Cambridge: CambridgeUniversity Press; 1968. (vol 2–5).
  • 37. Jávorka S, Csapody V. Icanographie der Flora des Südostlichen Mitteleuropa. Budapest: Akademiai Kiado; 1975.
  • 38. APHA, AWWA, WPCF. Standard methods for examination of water and wastewater. 17th ed. Washington, DC: APHA; 1995.
  • 39. STATISTICA 7.0. StatSoft; 2004.
  • 40. Spałek K. Nymphaeetum albae Vollmar 1947 em. Oberd. in Oberd.et al. 1967, a plant association new to Poland. Acta Soc Bot Pol.2007;76(1):81–84. http://dx.doi.org/10.5586/asbp.2007.011
  • 41. Larson D. Growth of three submerged plants below different densities of Nymphoides peltata (S.G. Gmel.) Kuntze. Aquat Bot. 2007;86(3):280–284. http://dx.doi.org/10.1016/j.aquabot.2006.10.007
  • 42. Lewin I, Szoszkiewicz K. Drivers of macrophyte development in rivers in an agricultural area: indicative species reactions. Cent Eur J Biol.2012;7(4):731–740. http://dx.doi.org/10.2478/s11535-012-0053-0
  • 43. Smits AJM, de Lyon MJH, van der Velde G, Steentjes PLM, Roelofs JGM. Distribution of three nymphaeid macrophytes [Nymphaea albaL., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze]in relation to alkalinity and uptake of inorganic carbon. Aquat Bot.1988;32(1–2):45–62. http://dx.doi.org/10.1016/0304-3770(88)90087-3
  • 44. OECD. Eutrophication of waters: monitoring, assessment and control. Paris: Organisation for Economic Co-operation and Development;1982.
  • 45. Lukács BA, Dévai G, Tóthmérész B. Aquatic macrophytes as bioindicators of water chemistry in nutrient rich backwaters along theUpper-Tisza river (in Hungary). Phytocoenologia. 2009;39(3):287–293.http://dx.doi.org/10.1127/0340-269X/2009/0039-0287
  • 46. Papastergiadou E, Babalonas D. The relationships between hydrochemical environmental factors and the aquatic macrophytic vegetation in stagnant and slow flowing waters. I. Water quality and distribution of aquatic associations. Arch Für Hydrobiol Suppl. 1993;90(4): 475–491.
  • 47. Smith DH, Madsen JD, Dickson KL, Beitinger TL. Nutrient effects on autofragmentation of Myriophyllum spicatum. Aquat Bot.2002;74(1):1–17. http://dx.doi.org/10.1016/S0304-3770(02)00023-2
  • 48. Chase JM, Knight TM. Effects of eutrophication and snails on Eurasian watermilfoil (Myriophyllum spicatum) invasion. Biol Invasions.2006;8(8):1643–1649. http://dx.doi.org/10.1007/s10530-005-3933-7
  • 49. Lacoul P, Freedman B. Environmental influences on aquatic plants in freshwater ecosystems. Env Rev. 2006;14(2):89–136. http://dx.doi.org/10.1139/a06-001
  • 50. Uredba o graničnim vrednostima zagadujućih materija u površinskim i podzemnim vodama i sedimentu i rokovima za njihovo dostizanje.Sl Glas RS. 2012;(50).
  • 51. Sýkora KV. Field guide Dutch plant communities. Species composition and ecology. 2006.
  • 52. Szoszkiewicz K, Kayzer D, Staniszewski R, Dawson H. Measures of central tendency of aquatic habitat parameters: application to rivermacrophyte communities. Pol J Ecol. 2010;58(4):693–706.
  • 53. Nikolić L, Čobanović K, Lazić D. Nymphoides peltata (Gmel.) Kuntze, Myriophyllum spicatum L. and Ceratophyllum demersum L. biomassdynamics in Lake Provala (the Vojvodina Province, Serbia). Cent Eur JBiol. 2007;2(1):156–168. http://dx.doi.org/10.2478/s11535-007-0003-4
  • 54. Grīnberga L, Spriņge G. Potential impact of climate change on aquatic vegetation of River Salaca, Latvia. Proc Latv Acad Sci Sect B Nat Exact Appl Sci. 2008;62(1–2):34–39. http://dx.doi.org/10.2478/ v10046-008-0011-4
  • 55. Staniszewski R. Estimation of river trophy in the Kujawskie Lakeland using mean trophic rank and chemical index of trophy. Rocz AR Pozn Bot. 2001;4:165–173.
  • 56. Coldea G, Sanda V, Popescu A, Ştefan N, editors. Les associations végétales de Roumanie. Cluj: Presses Universitaires de Cluj; 1997. (vol 1).
  • 57. Olszewski T, Markowski T. Trapa natans L. s.l. as extinct in the 19th century component of Gdańsk Pomerania flora. In: Olszewski T, Afranowicz R, Bociąg K, editors. Contemporary trends of botanical research – on Professor Hanna Piotrowska 80th birthday anniversary. 2007. p. 153–156. (Acta Bot Cassub; vol 6).
  • 58. Janauer G, Dokulil M. Macrophytes and algae in running waters. In: Ziglio G, Siligardi M, Flaim G, editors. Water quality measurements.Chichester: John Wiley & Sons; 2006. p. 89–109. http://dx.doi.org/10.1002/0470863781.ch6
  • 59. Kufel L, Strzałek M, Wysokińska U, Biardzka E, Oknińska S, Ryś K. Growth rate of duckweeds (Lemnaceae) in relation to the internaland ambient nutrient concentrations – testing the Droop and Monodmodels. Pol J Ecol. 2012;60(2):241–249.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a11eb864-9a96-4133-9f3c-7755153231d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.