CHLOROPHYLL FLUORESCENCE OF UV-B IRRADIATED BEAN LEAVES SUBJECTED TO CHILLING IN LIGHT

Elżbieta Skórska

Department of Physics, Agricultural University of Szczecin

Introduction

The effect of UV-B radiation on plants can be modified by such environmental factors as non-optimal temperature (low or high) and light. Bean belongs to chilling-sensitive plants, i.e. susceptible to chilling temperature (below 10°C, but above the freezing point), as well as to UV-B-susceptible species [BORNMAN, TERAMURA 1993; TERAMURA, SULLIVAN 1994]. The photosynthetic apparatus is the most sensitive target for both stress factors [Cen, Bornman 1990]. The aim of this research was to study the effect of chilling in the presence of light on the primary photosynthesis reaction using chlorophyll a fluorescence detection of UV-B irradiated bean plants. This method is used in the studies on plant reaction to both stresses studied in this paper [LICHTENTHALER et al. 1986; ÖQUIST et al. 1987; KRAUSE, WEIS 1991; SCHREIBER et al. 1994; SKÓRSKA 1996, 1999; MURKOWSKI, SKÓRSKA 1997].

Material and methods

Seeds of bean (*Phaseolus vulgaris* L. cv. Aura) were watered in Petri dishes with distilled water, and after germination were transferred into pots with sand. The pots were placed on the rotary stage in two special chambers [SKÓRSKA 1999; 2000] in the following controlled conditions: temperature 22°C/18°C (day/night), air humidity 40%, LRF 400 lamps (PAR¹ 150 μ mol·m-²·s-¹), and photoperiod 12 h. The plants were watered daily with 50% Hoagland nutrient. One part of two-week old plants was subjected to UV-B irradiation (UV-B_{BE} = 1.86 kJ·m-²·d-¹, 3 days) with the lamp type VL-115 M [SKÓRSKA 2000], whilst the second part – the control plants – was grown for the same duration of time without UV-B. The applied UV-B dose was higher by 50% than that from the natural solar radiation. Thereafter, from the first leaves, sample discs (15 mm of diameter) were cut out and treated for two hours with chill (2°C) in increased PAR intensity (600 μ mol·m-²·s-¹). After the chilling, the samples were dark-adapted for 15 min and the measurements were done for the parameters of chlorophyll fluorescence F./F_m, F./F_o and Rfd, using Plant Efficiency Analyser (PEA Hansatech, England),

¹ PAR - Photosynthetically active radiation

392 E. Skórska

according to LICHTENTHALER et al. [1986]. Parameters F_v/F_m and F_v/F_o are proportional to maximal photochemical efficiency, and to the activity of the donor side, respectively Rfd - vitality index; F_o , F_m , F_v denote respectively intensity of initial, maximal and variable fluorescence ($F_v = F_m - F_o$). After two weeks of further growth, in the stage of the third leaf couples, the plants were subjected to UV-B radiation (UV-B_{DE} = 1.86 kJ·m⁻²·d⁻¹, 6 days). Then, the discs were cut out from the third leaves, treated as previously, and similar measurements were done. The results are presented as means from 6 independent biological replications. Two-way analysis of variance was used, and the Duncan test – for separation of the groups, marked with the same letters, at the significance level of p < 0.05.

Results and discussion

The measured parameters of chlorophyll fluorescence were lower in UV-B irradiated bean leaves in comparison with the control (Table 1), especially in the first leaves. The third leaves seemed more tolerant to the applied dose of UV-B

Table 1: Tabela 1

Chlorophyll fluorescence parameters of the control and UV-B irradiated bean leaves after 2 hours at 20°C or at chilling temperature (2°C) in light

Parametry fluoresceneji chlorofilu kontrolnych i napromieniowanych UV-B liści fasoli po 2 godzinach w temperaturze 20°C lub w 2°C na świetle

P -	- 8	- · · · ·	tuize zo e it			
Variant Wariant	$F_{\nu}F_{m}$		F,/F _o		Rfd	
	control kontrola	UV-B	control kontrola	UV-B	control kontrola	UV-B
1st leaves (UV-B _{BE} =1.86 kJ·m ⁻² ·d ⁻¹ , 3 days); pierwsze liście (UV-B _{BE} =1,86 kJ·m ⁻² ·d ⁻¹ , 3 dni)						
20°C	0.80ª	0.76 ^b	4.1*	3.2b	2.0°	1.6b
2°C	0.60⁴	0.52d	1.6°	1.0 ^d	0.8⁵	0.54
Effect significance: Istotność efektu:						
Chilling; Chłód	***		***		***	
UV-B	***		***		**	
Chilling × UV-B Chłód × UV-B	n.s.		n.s.		n.s.	
3rd leaves (UV-B _{BE} =1.86 kJ·m ⁻² ·d ⁻¹ , 6 days); trzecie liście (UV-B _{BE} =1,86 kJ·m ⁻² ·d ⁻¹ , 6 dni)						
20°C	0.81*	0.80*	4.42	3.9ь	2.1*	2.2
2°C	0.59b	0.53€	1.4°	1.1 ^d	0.8ь	0.3¢
Effect significance: Istotność efektu:						
Chilling; Chłód	***		***		***	
UV-B	***		***		*	
Chilling × UV-B Chłód × UV-B	n.s.		n.s.		***	

the means denoted by the same letter (for one parameter) do not differ significantly (p<0.05); średnie oznaczone taką samą literą (dla jednego parametru) nie różnią się istotnie (p<0.05)

effect significant at the level *p < 0.05, **p < 0.01, ***p < 0.001; istotność efektu na poziomie *p < 0.05, **p < 0.01, ***p < 0.001 n.s. – not significant; nieistotna

radiation, particularly as it was twice higher than previously – in the earlier phase of the plant growth. This may have resulted from the plant hardening to UV-B radiation, similarly as in the case of the effect of the other environmental stresses [STARCK et al. 1995].

As a result of chilling, further decrease in the measured parameters was observed in a similar degree for both groups, which indicates an inhibition of the photosynthesis light reactions in PS II. The value of the Rfd parameter decreased the most, showing disturbance in co-operation between the light and dark enzymatic reactions of photosynthesis [LICHTENTHALER et al. 1986].

Taking into consideration the results of similar experiments conducted on cucumber plants [SKÓRSKA 1999], one can assert that the studied bean plants showed greater tolerance both to UV-B radiation and the chilling stress.

References

BORNMAN J.F., TERAMURA A.H. 1993. Effects of ultraviolet-B radiation on terrestrial plants, in: Environmental UV photobiology. Young A.R. (Ed.). Plenum Press New York 14: 427–477.

CEN Y-P., BORNMAN J.F. 1990. The response of bean plants to UV-B radiation under different irradiances of background visible light. J. Exp. Botany 41(232): 1489–1495.

Krause G.H., Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. Plant Physiol. Plant Molec. Biol. 42: 313–349.

LICHTENTHALER H., BUSCHMANN C., RINDERLE U., SCHMUCK G. 1986. Application of chlorophyll fluorescence in ecophysiology. Radiat. Environ. Biophys. 25: 297–308.

Murkowski A., Skórska E. 1997. Chlorophyll a luminescence – an index of photoin-hibition damages. Curr. Top. Biophysics 21(1): 72–78.

ÖQUIST G., GREER D.H., ÖGREN E. 1987. Light stress at low temperature, in: Photoin-hibition. Kyle D.J., Osmond C.B., Arntzen C.J., Barber J. (Ed.). Elsevier Sci. Publ. 3: 67–87.

Schreiber U., Bilger W., Neubauer C. 1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis, in: Ecophysiology of photosynthesis. Schulze E.D., Caldwell M.M. (Ed.). Ecol. Stud. 100: 49–70.

SKÓRSKA E. 1996. Influence of ultraviolet-B (UV-B) radiation on the activity of photosynthesis primary reactions of some plants, in: Ecophysiological aspect of plant reactions on abiotic stress factors. Grzesiak S. (Ed.). ZFR PAN, Kraków: 517–522.

SKÓRSKA E. 1999. Effect of chill on chlorophyll fluorescence of cucumber leaves of plants subjected to UV-B irradiation. Zesz. Probl. Post. Nauk Rol. 469(1): 137–144.

SKÓRSKA E. 2000. Comparison of responses of bean, pea and rape plants to UV-B radiation in darkness and in light. Acta Physiol. Plant. 22(2): 163–169.

STARCK Z., CHOŁUJ D., NIEMYSKA B. 1995. Fizjologiczne reakcje roślin na niekorzystne czynniki środowiska. Wyd. SGGW Warszawa: 167 pp.

TERAMURA A.H., SULLIVAN J.H. 1994. Effect of UV-B radiation on photosynthesis and growth of terrestial plants. Photosynth. Res. 39(3): 463–473.

Key words:

bean, chill, chlorophyll fluorescence, Phaseolus vulgaris L., ultraviolet

Summary

The plants of bean (*Phaseolus vulgaris* L. cv. Aura) grown in controlled conditions (PAR 150 $\mu \rm{mol \cdot m^{-2} \cdot s^{-1}}$, air humidity 50%, temperature 22°C/18°C, day/night, photoperiod 12 h) were subjected to UV-B irradiation (UV-B_{BE} = 1.86 kJ·m^{-2}·d^{-1}). Then, sample discs were cut out from the leaves and treated for two hours with chill (2°C) in high light (PAR 600 $\mu \rm{mol \cdot m^{-2} \cdot s^{-1}})$. The chilling induced a decrease in the measured chlorophyll fluorescence parameters, particularly in the UV-B irradiated plants, indicating disturbances of the primary photochemical reactions of photosynthesis. The greatest changes were observed in the Rfd parameter, determining co-operation between the light and dark enzymatic photosynthetic reactions.

FLUORESCENCJA CHLOROFILU LIŚCI FASOLI NAPROMIENIOWANYCH UV-B I PODDANYCH DZIAŁANIU CHŁODU NA ŚWIETLE

Elżbieta Skórska Zakład Fizyki, Akademia Rolnicza w Szczecinie

Słowa kluczowe:

chłód, *Phaseolus vulgaris* L., fasola, fluorescencja chlorofilu, ultrafiolet, UV-B

Streszczenie

Rośliny fasoli (*Phaseolus vulgaris* L. odmiany Aura) rosnące w kontrolowanych warunkach światła i temperatury (PAR 150 μ mol·m-²·s-¹, fotoperiod 12 h, 22°C/18°C, dzień/noc, wilgotność 50%) poddano napromieniowaniu UV-B_{BE} = 1,86 kJ·m-²·d-¹). Następnie z liści wycięto krążki, które przez 2 godziny poddano działaniu obniżonej temperatury (2°C) przy zwiększonym poziomie PAR 600 μ mol·m-²·s-¹. Parametry fluorescencji chlorofilu F $_{\nu}$ F $_{\mu}$, F $_{\nu}$ F $_{\nu}$ i Rfd, mierzone przy użyciu fluorymetru PEA Hansatech, uległy zmniejszeniu zarówno pod wpływem UV-B, jak i po ochłodzeniu, wskazując na inhibicję reakcji świetlnych fotosyntezy. Największym zmianom uległ parametr Rfd, określający współdziałanie między reakcjami świetlnymi i ciemniowymi reakcjami enzymatycznymi fotosyntezy.

Dr hab. Elżbieta **Skórska** Zakład Fizyki Akademia Rolnicza ul. Papieża Pawła VI nr 3A 71–459 SZCZECIN

e-mail: skorska@dedal.man.szczecin.pl or ela@skorska.net