PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 3 |

Tytuł artykułu

Influence of foliar treatment with silicon contained in the Actisil Hydro Plus preparation on the growth, flowering and chemical composition of Gazania rigens (L.) Gaertn., Salvia farinacea Benth and Verbena hybrida Voss

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Silicon is an element that significantly reduces the vulnerability of plants to biotic and abiotic stress factors, increases their resistance to pathogens and pests, strengthens tissues and cellular membranes, increases biomass and crops, improves the nutritional state of plants and increases the chlorophyll content. It also influences the formation of morphological traits of plants. The aim of our research was to determine the influence of silicon contained in the Actisil preparation on the growth and blooming of Gazania rigens, Salvia farinacea and Verbena hybrida, which are commonly cultivated in flowerbeds and on balconies. A two-factor experiment consisted of the foliar application of a solution of silicon in the following concentrations: 0 mg dm-3, 120 mg dm-3 and 240 mg dm-3. The application was performed 2, 4 and 6 times at one-week intervals. Biometric measurements were carried out at the beginning of the blooming of plants. The laboratory analyses included determinations of P, K, Mg, Ca, Si and the chlorophyll content in leaves. Beneficial influence of silicon on most of the morphological traits of the analysed species was demonstrated. Plants responded the best to two or four treatments with the silicon solution of a concentration of 120 mg dm-3, with an increase in the values of the analysed morphological traits. The application of silicon did not significantly modify the content of mineral elements in the dry weight of leaves. The application of silicon to Gazania rigens led to an increase in the content of this element in leaves as well as to an elevated chlorophyll content.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

3

Opis fizyczny

p.681-692,ref.

Twórcy

autor
  • Chair of Horticulture, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24 A, 50-363 Wroclaw, Poland
  • Chair of Horticulture, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
  • Chair of Horticulture, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
  • Chair of Horticulture, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland

Bibliografia

  • Arnon D.I. 1949. Copper enzymes in isolated chloroplasts. Poly-phenoloxidase in Beta vulgaris. Plant. Physiol., 24: 1-15.
  • Bayat H., Alirezaie M., Neamati H., Saadabad A. 2013. Effect of silicon on growth and ornamental traits of salt-stressed calendula (Calendula officinalis L.). J. Ornamen. Plants, 3(4): 207-2014. DOI: 10.1093/jxb/ers329
  • Bockhaven J., De Vlee sschauwer D., Hofte M. 2013: Towards establishing broad-spectrum disease resistance in plants: Silicon leads the way. J. Exp. Bot., 64: 1281-1293.
  • Cho R.H., Joung H.Y., Lim K., Kim L. 2013. Effect of calcium and silicate application on pathogenicity of Erwinia carotovora subsp. carotovora in Zantedeschia spp. Hort. Environ. Biotechnol., 54(4): 364-371. DOI: 10.1007/s13580-013-0059-1
  • Epstein E. 1999. Silicon. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 50: 641-664.
  • Górecki R.S., Daniel ski-Busch W. 2009. Effect of silicate fertilizers on yielding of greenhouse cucumber (Cucumis sativus L.) in container cultivation. J. Elem., 14(1): 71-78.
  • Hogendorp B.K., Cloyd R.A., Swiader J.M. 2012. Determination of silicon concentration in some horticultural plants. Hort. Sci., 47(11): 1593-1595.
  • Jarosz Z. 2013. The effect of silicon application and type of substrate on yield and chemical composition of leaves and fruit of cucumber. J. Elem., 3: 403-414. DOI: 10.5601/jelem.2013.18.3.05
  • Kamenidou S., Cavins T.J., Marek S. 2008. Silicon supplements affect horticultural traits of greenhouse- produced ornamental sunflowers. Sci. Hort., 43(1): 236-239.
  • Kamenidou S., Cavins T.J., Marek S. 2009. Evoluation of silicon as a nutrional supplement for greenhouse zinnia production. Sci. Hort., 119: 297-301.
  • Kamenidou S., Cavins T.J., Marek S. 2010. Silicon supplements affects floricultural quality traits and elemental nutrient concentration of greenhouse produced gerbera. Sci. Hort., 123: 390-394.
  • Korndörfer A.P., Grisoto E., Vendramin D. 2010. Introduction of insects plant resistance to the spittlebug (Hemiptera: Cercopidae) in sugarcane by silicon application. Neotrop. Entomol., 40(3): 387-392.
  • Laing M.D., Gataryiha M.C., Adandonon A. 2006. Silicon use for pest control in agriculture. Proc. S. Afr. Sug. Technol. Ass., 80: 280-286.
  • Lim M.Y., Lee E.J., Jana S., Sivanesan I., Jeong B.R. 2012. Effect of potassium silicate on growth ad leaf epidermal characteristics of begonia and pansy grown in vitro. Kor. J. Hort. Sci. Technol., 30: 579-585.
  • Ma F.J., Yamaji N. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci., 11(8): 392-397.
  • Mattson N.S., Leatherwood W.R. 2010. Potassium silicate drenches increase leaf silicon content and affect morphological traits of several floriculture crops grown in a peat-based substrate. Hort. Sci., 45(1): 43-47.
  • Mikiciuk G., Mikiciuk M. 2008. Physiological reaction of strawberry (Fragaria ananassa Duch.) cultivar Senga Sengana on foliar fertilization potassium-silicate. Ann. UMCS, Agric., 63(2): 81-85. (in Polish)
  • Moyer C., Peres N.A., Datnoff L.E., Simonne E.H., Deng Z. 2008. Evaluation of silicon for managing powdery mildew on Gerbera daisy. J. Plant Nutr., 31: 2131-2144.
  • Reezi S., Babalar M., Kalantari S. 2009. Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of saltstressed cut rose (Rosa x hybrida L.) ‘Hot Lady’. Afr. J. Biotechnol., 8(8): 1502-1508.
  • Sacała E. 2009. Role of silicon in plant resistance to water stress. J. Elem., 14(3): 619-630.
  • Savvas D., Gizas G., Karras G., Lydakis-Simantiris N., Salahas G., Papadimitriou M., Tsouka. 2007. Interactions between silicon and NaCl-salinity in a soiless culture of roses in greenhouse. Europ. J. Hort. Sci., 72(2): 73-79.
  • Shetty R., Jensen B., Shetty N.P., Hansen M., Hansen C.W., Starkey K.R., Jørgensen H.J.L. 2012. Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Pathol., 61: 120-131.
  • Sivanesan I., Jeong B.R. 2014. Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora Bunge by altering activity of antioxidant enzyme. Sci. World. J. DOI: 10.1155/2014/521703
  • Sivanesan I., Son S.M., Song Y.J., Jeong R.B. 2013. Silicon supply through the subirrigation system affects growth of three chrysanthemum cultivars. Hort. Environ. Biotechnol., 54(1): 14-19. DOI 10.1007/s13580-013-0120-0
  • Soundararajan P., Sivanesan I., Jo E.H., Jeong B.R. 2013. Silicon promotes shoot proliferation and shoot growth of Salvia splendens under salt stress invitro. Hort. Environ. Biotechnol., 54: 311-318. DOI 10.1007/s13580-014-0023-8
  • Tesfagiorgis H.B., Laing M.D. 2013. The effects of silicon level in nutrient solution on the uptake and distribution of silicon in zucchini and zinnia, and its interaction with the uptake of selected elements. Afr. J. Biotechnol., 12(14): 1617-1623. DOI: 10.5897/AJB2012.3038
  • Zhao D., Hao Z., Tao J., Han Ch. 2012. Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora Pall.). Sci. Hort., 151: 165-172.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9f4470a3-c476-474d-8167-cc20aa0597e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.