PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |

Tytuł artykułu

Atmospheric emissions of As, Sb, and Se from coal combustion in shandong province, 2005-2014

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The emissions of hazardous trace elements have gained considerable attention because of their negative impacts on local air quality, regional environmental health, and ecological risks. Shandong Province has beenconsidered to be the top provincial emitter of Sb, As, and Se in China owing to rapid economic development and its energy consumption structure (mainly coal). In this study we investigate the atmospheric emissions of Sb, As, and Se from coal combustion in Shandong from 2005 to 2014, and we analyze a scenario for future emissions from coal-fired power plants. The inventory is based on the following parameters: coal consumption, economic sectors, boiler types, and air pollution control technologies. Results indicate that the calculated provincial total emissions of Sb, As, and Se from coal combustion in 2005 were estimated at 40.26, 246.5, and 255.9 t, respectively, and increased to 51.36, 311.9, and 313.9 t by 2014 with annual growth rates of 2.75%, 2.65%, and 2.27%. Industrial use was the largest single sector, accounting for nearly 83.2%, 82.6%, and 74.2% of the provincial total emissions for Sb, As, and Se in 2014, respectively. The emissions from coal-fired power plants have been controlled by the installation of flue gas desulfurization systems. In addition, scenario analysis shows that Sb and As emissions from coal-fired power plants will decrease in the future in a high-efficiency control technology scenario. However, Se emissions in 2030 will still be higher than in 2014. This study demonstrates the importance of assessing the effectiveness of control measures and supplying necessary suggestions for managing coal combustion in Shandong.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

6

Opis fizyczny

P.2339-2347,fig.,ref.

Twórcy

autor
  • Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
autor
  • School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China

Bibliografia

  • 1. The People’s Government of Shandong Province (PGSD) The Air Pollution Control Plan for Shandong Provinceduring 2013-2020 (in Chinese), 2013. http://sdgb.shandong.gov.cn/art /2013/9/3 /art_4563_1906.html.
  • 2. Shandong Province Environmental Bulletin, Environmental Protection Department of Shandong Province, 2014. http://xxgk.sdein.gov.cn/xxgkml/hjzkgb/201506 /t20150602 .html.
  • 3. Shandong environment statistical data, Enverionmental protection department of Shandong province, 2014. http://zlc.sdein.gov.cn/hjtj/201511/t20151103_286781.html.
  • 4. Cheng H., Zhou T., Li Q., Lu L., Lin C. Anthropogenic Chromium Emissions in China from 1990 to 2009. PloS ONE 9: e87753,2014.
  • 5. Li H., Wang Q.g., Shao M., Wang J., Wang C. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China. Environmental Pollution 208, Part B: 655, 2016.
  • 6. Li H., Wang J., Wang Q.g., Qian X., Qian Y. Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China. Atmospheric Environment 103, 339, 2015.
  • 7. Li H., Qian X., Wang Q. Heavy Metals in Atmospheric Particulate Matter: A Comprehensive Understanding Is Needed for Monitoring and Risk Mitigation. Environmental Science & Technology 47, 13210, 2013.
  • 8. Filella M., Belzile N., Chen Y.W. Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Science Reviews 57, 125, 2002.
  • 9. Filella M., Belzile N., Lett M.C. Antimony in the environment: A review focused on natural waters. III. Microbiota relevant interactions. Earth-Science Reviews 80, 195, 2007.
  • 10. Gebel T. Arsenic and antimony: comparative approach on mechanistic toxicology. Chemico-Biological Interactions 107, 131, 1997.
  • 11. Rayman M.P. Selenium and human health. Lancet 379: 1256, 2012.
  • 12. Tian H.Z., Wang Y., Xue Z.G., Cheng K., Qu Y.P. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980-2007. Atmos Chem Phys 10, 11905, 2010.
  • 13. National Health and Family Planning statistical yearbook, National Health and Family Planning Commission of the People›s Republic of China, 2014, http://www.nhfpc.gov.cn/ zwgkzt/tjnj/list.shtml .
  • 14. Zhu J., Wang N., Li S., Li L., Su H. Distribution and transport of selenium in Yutangba, China: Impact of human activities. Science of The Total Environment 392, 252, 2008.
  • 15. Mao D., Su H., Yan L. An epidemiologic investigation on selenium poisoning in southwestern Hubei Province. Chinese Journal of Endemiology 9 (5), 311, 1990.
  • 16. Tian H.Z., Zhao D., He M.C., Wang Y., Cheng K. Temporal and spatial distribution of atmospheric antimony emission inventories from coal combustion in China. Environmental Pollution 159, 1613, 2011.
  • 17. Meij R., Winkel H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations. Atmospheric Environment 41, 9262, 2007.
  • 18. Ondov J.M., Ragaini R.C., Biermann A.H. Emissions and particle-size distributions of minor and trace elements at two western coal-fired power plants equipped with cold-side electrostatic precipitators. Environmental Science & Technology 14, 1534, 1980.
  • 19. Senior C.L., Helble J.J., Sarofim A.F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Processing Technology 65-66, 263, 2000.
  • 20. Yokoyama T., Asakura K., Matsuda H., Ito S., Noda N. Mercury emissions from a coal-fired power plant in Japan. Science of The Total Environment 259, 97, 2000.
  • 21. Chen J., Liu G., Kang Y., Wu B., Sun R., Zhou C., Wu D. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China, Chemoshere, 90, 1925, 2013.
  • 22. Tang S., Feng X., Qiu J., Yin G., Yang Z. Mercury speciation and emissions from coal combustion in Guiyang, southwest China. Environmental Research 105, 175, 2007.
  • 23. Xiong T., Jiang W., Gao W. Current status and prediction of major atmospheric emissions from coal-fired power plants in Shandong Province, China. Atmospheric Environment 124, Part A: 46, 2016.
  • 24. Zhao Y., Wang S., Duan L., Lei Y., Cao P. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmospheric Environment 42, 8442, 2008.
  • 25. Tian H., Qu Y., Wang Y., Pan D., Wang X. Atmospheric selenium emission inventories from coal combustion in China in 2005. China Environmental Science 29, 1011, 2009.
  • 26. Cheng K., Wang Y., Tian H., Gao X., Zhang Y. Atmospheric Emission Characteristics and Control Policies of Five Precedent-Controlled Toxic Heavy Metals from Anthropogenic Sources in China. Environmental Science & Technology 49, 1206, 2015.
  • 27. Ministry of Environmental Protection of China (MEP) Emission Standard of Air Pollutants for Thermal Power Plants.GB 13223-2011, Beijing, China, 2011.
  • 28. Ministry of Environmental Protection of China (MEP) Ambient Air Quality Standards;GB 3095-2012. Beijing, China, 2012.
  • 29. Tian H.Z., Zhu C.Y., Gao J.J., Cheng K., Hao J.M. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys 15, 10127, 2015.
  • 30. Shandong Statistics Bureau (SDSB), Shandong Statistical Yearbook 2006-2015 (in Chinese). Beijing: China Statistics Press, 2006-2015 .
  • 31. China Electricity Council (CEC), China electric power yearbook. Beijing: China Electric Power Press, 2005-2015.
  • 32. Helble J.J., Mojtahedi W., Lyyränen J., Jokiniemi J., Kauppinen E. Trace element partitioning during coal gasification. Fuel 75, 931, 1996 .
  • 33. Klika Z., Bartoňov á L., Spears D.A. Effect of boiler output on trace element partitioning during coal combustion in two fluidised-bed power stations. Fuel 80, 907, 2001.
  • 34. Gogebakan Z., Gogebakan Y., Selçuk N., Selçuk E. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite. Bioresource Technology 100, 1033, 2009.
  • 35. Otero -Rey J.R., López -Vilariño J.M., Moreda -Piñeiro J., Alonso -Rodríguez E., Muniategui - Lorenzo S. As, Hg, and Se Flue Gas Sampling in a Coal-Fired Power Plant and Their Fate during Coal Combustion. Environmental Science & Technology 37, 5262, 2003.
  • 36. Dai S., Ren D., Chou C., Finkelman R., Seredin V., Zhou Y. Geochemistry of trace elements in Chinese coals A review of abundances, genetic types, impacts on human health, and industrial utilization, Int. J. Coal Geol. 94, 3, 2012.
  • 37. Shandong Statistics Bureau (SDSB), Shandong Statistical Yearbook 2013. Beijing: China Statistics Press, 2013.
  • 38. Demir I., Hughes R.E., DeMaris P.J. Formation and use of coal combustion residues from three types of power plants burning Illinois coals. Fuel 80, 1659, 2001.
  • 39. Åmand L.E., Leckner B. Metal emissions from cocombustion of sewage sludge and coal/wood in fluidized bed. Fuel 83, 1803, 2004.
  • 40. Zajusz -Zubek E., Konieczyński J. Dynamics of trace elements release in a coal pyrolysis process. Fuel 82, 1281, 2003.
  • 41. Gogebakan Z., Selçuk N. Trace elements partitioning during co-firing biomass with lignite in a pilot-scale fluidized bed combustor. Journal of Hazardous Materials 162, 1129, 2009.
  • 42. Ondov J.M., Ragaini R.C., Biermann A.H. Elemental emissions from a coal-fired power plant. Comparison of a venturi wet scrubber system with a cold-side electrostatic precipitator. Environmental Science & Technology 13, 598, 1979.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9eb717af-0a68-4ae7-99dc-77e722e661a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.