PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 76 | 4 |

Tytuł artykułu

Neonatal exposure to monosodium glutamate results in dysmorphology of orofacial lower motor neurons

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and is stored and released by both neurons and astrocytes. Despite the important role of glutamate as a neurotransmitter, high levels of extracellular glutamate can result in excitotoxicity and apoptosis. Monosodium glutamate (MSG) is a naturally occurring sodium salt of glutamic acid that is used as a flavour enhancer in many processed foods. Neonatal exposure to MSG has been shown to result in neurodegeneration in several forebrain regions, characterised by neuronal loss and neuroendocrine abnormalities. However, the brainstem effects of neonatal MSG exposure have not been investigated. It is therefore hypothesized that MSG exposure during the early postnatal period would impact brainstem lower motor neurons involved in feeding behaviour. The effect of neonatal MSG exposure on brainstem lower motor neurons was investigated by exposing rat pups to either 4 mg/g MSG or saline from postnatal day (P) 4 through 10. On P28, brains were preserved by vascular perfusion with fixative, frozen sectioned and stained for Nïssl substance. The number, size and shape of brainstem motor neurons were compared between MSG and saline-exposed animals. MSG exposure had no impact on the total number of neurons in the nuclei examined. However, MSG exposure was associated with a significant increase in the number of round somata in both the trigeminal and facial nuclei. Furthermore, MSG exposure resulted in significantly smaller neurons in all motor nuclei examined. These results suggest that neonatal exposure to MSG impacts the development of brainstem lower motor neurons which may impact feeding and swallowing behaviours in young animals. (Folia Morphol 2017; 76, 4: 582–589)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

76

Numer

4

Opis fizyczny

p.582-589,fig.

Twórcy

autor
  • Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
autor
  • Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
autor
  • University of Pittsburgh Medical Center – Hamot, Neuroscience Institute, Erie, PA, United States
autor
  • University of Pittsburgh Medical Center – Hamot, Neuroscience Institute, Erie, PA, United States
autor
  • Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States

Bibliografia

  • 1. Alloway KD, Smith JB, Beauchemin KJ. Quantitative analysis of the bilateral brainstem projections from the whisker and forepaw regions in rat primary motor cortex. J Comp Neurol. 2010; 518(22): 4546–4566, doi: 10.1002/cne.22477, indexed in Pubmed: 20886621.
  • 2. Arees EA, Mayer J. Monosodium glutamate-induced brain lesions: electron microscopic examination. Science. 1970; 170(3957): 549–550, indexed in Pubmed: 5507208.
  • 3. Bojanic VV, Bojanic Z, Najman S, et al. Diltiazem prevention of monosodium glutamate toxicity on hypothalamus in Wistar rats. Arch Oncol. 2004; 12: 19–20.
  • 4. Burde RM, Schainker B, Kayes J. Acute effect of oral and subcutaneous administration of monosodium glutamate on the arcuate nucleus of the hypothalamus in mice and rats. Nature. 1971; 233(5314): 58–60, indexed in Pubmed: 12058742.
  • 5. Carricondo F, Bartolomé MV, Vicente-Torres MA, et al. Sensitivity to glutamate neurotoxicity in different developmental periods of the rat cochlea. Adv Otorhinolaryngol. 2002; 59: 91–95, indexed in Pubmed: 11885666.
  • 6. Chaparro-Huerta V, Rivera-Cervantes MC, Torres-Mendoza BM, et al. Neuronal death and tumor necrosis factor-alpha response to glutamate-induced excitotoxicity in the cerebral cortex of neonatal rats. Neurosci Lett. 2002; 333(2): 95–98, indexed in Pubmed: 12419489.
  • 7. Curtis DR, Phillis JW, Watkin JC. Chemical excitation of spinal neurones. Nature. 1959; 183(4661): 611–613, indexed in Pubmed: 13632811.
  • 8. Everly JL. Light microscopic examination of MSG-induced lesions in the brain of fetal and neonatal rats. Anat Rec. 1971; 169: 312.
  • 9. Fan MMY, Raymond LA. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol. 2007; 81(5-6): 272–293, doi: 10.1016/j.pneurobio.2006.11.003, indexed in Pubmed: 17188796.
  • 10. Fay RA, Norgren R. Identification of rat brainstem multisynaptic connections to the oral motor nuclei in the rat using pseudorabies virus. II. Facial muscle motor systems. Brain Res Brain Res Rev. 1997; 25(3): 276–290, indexed in Pubmed: 9495559.
  • 11. Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem. 1984; 42(1): 1–11, doi: 10.1111/j.1471-4159.1984.tb09689.x.
  • 12. Gill SS, Mueller RW, McGuire PF, et al. Potential target sites in peripheral tissues for excitatory neurotransmission and excitotoxicity. Toxicol Pathol. 2000; 28(2): 277–284, doi: 10.1177/019262330002800207, indexed in Pubmed: 10805145.
  • 13. Goldsmith PC. Neuroglial responses to elevated glutamate in the medial basal hypothalamus of the infant mouse. J Nutr. 2000; 130(4S Suppl): 1032S–1038S, indexed in Pubmed: 10736376.
  • 14. González-Burgos I, Velázquez-Zamora DA, Beas-Zárate C. Damage and plasticity in adult rat hippocampal trisynaptic circuit neurons after neonatal exposure to glutamate excitotoxicity. Int J Dev Neurosci. 2009; 27(8): 741–745, doi: 10.1016/j.ijdevneu.2009.08.016, indexed in Pubmed: 19733648.
  • 15. Gonzalez-Joekes J, Schreurs BG. Anatomical characterization of a rabbit cerebellar eyeblink premotor pathway using pseudorabies and identification of a local modulatory network in anterior interpositus. J Neurosci. 2012; 32(36): 12472–12487, doi: 10.1523/JNEUROSCI.2088-12.2012, indexed in Pubmed: 22956838.
  • 16. Harris AJ. Critical periods in the development of motoneurons. Rev Neurol (Paris). 1988; 144(11): 643–647, indexed in Pubmed: 3231955.
  • 17. Hartley DM, Choi DW. Delayed rescue of N-methyl-Daspartate receptor-mediated neuronal injury in cortical culture. J Pharmacol Exp Ther. 1989; 250(2): 752–758, indexed in Pubmed: 2569534.
  • 18. Hashem HE, El-Din Safwat MD, Algaidi S. The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). J Mol Histol. 2012; 43(2): 179–186, doi: 10.1007/s10735-011-9380-0, indexed in Pubmed:22143495.
  • 19. Hattox AM, Priest CA, Keller A. Functional circuitry involved in the regulation of whisker movements. J Comp Neurol. 2002; 442(3): 266–276, indexed in Pubmed: 11774341.
  • 20. Hayashi T. A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. Jpn J Physiol. 1952; 3: 46–64, doi: 10.2170/jjphysiol.3.46.
  • 21. Hinrichsen CF, Watson CD. Brain stem projections to the facial nucleus of the rat. Brain Behav Evol. 1983; 22(2-3): 153–163, indexed in Pubmed:6303494.
  • 22. Holstege G, van Ham JJ, Tan J. Afferent projections to the orbicularis oculi motoneuronal cell group. An autoradiographical tracing study in the cat. Brain Res. 1986; 374(2): 306–320, indexed in Pubmed: 3719340.
  • 23. Jung KH, Chu K, Lee ST, et al. Augmentation of nitrite therapy in cerebral ischemia by NMDA receptor inhibition. Biochem Biophys Res Commun. 2009; 378(3): 507–512, doi: 10.1016/j.bbrc.2008.11.081, indexed in Pubmed: 19056343.
  • 24. Kalb RG. Regulation of motor neuron dendrite growth by NMDA receptor activation. Development. 1994; 120(11): 3063–3071, indexed in Pubmed:7720552.
  • 25. Kawamura M, Azuma N, Kohsaka S. [Experimental studies on microphthalmos formation in neonatal rats treated with monosodium-L-glutamate]. Nippon Ganka Gakkai Zasshi. 1989; 93(5): 553–561, indexed in Pubmed: 2801357.
  • 26. Kiss P, Tamas A, Lubics A, et al. Development of neurological reflexes and motor coordination in rats neonatally treated with monosodium glutamate. Neurotox Res. 2005; 8(3-4): 235–244, indexed in Pubmed: 16371318.
  • 27. Kulesza RJ. Cytoarchitecture of the human superior olivary complex: medial and lateral superior olive. Hear Res. 2007; 225(1-2): 80–90, doi: 10.1016/j.heares.2006.12.006, indexed in Pubmed: 17250984.
  • 28. Kulesza RJ. Cytoarchitecture of the human superior olivary complex: nuclei of the trapezoid body and posterior tier. Hear Res. 2008; 241(1-2): 52–63, doi: 10.1016/j.heares.2008.04.010, indexed in Pubmed: 18547760.
  • 29. Kulesza RJ, Lukose R, Stevens LV. Malformation of the human superior olive in autistic spectrum disorders. Brain Res. 2011; 1367: 360–371, doi:10.1016/j.brainres.2010.10.015, indexed in Pubmed: 20946889.
  • 30. Li YQ, Takada M, Kaneko T, et al. Distribution of GABAergic and glycinergic premotor neurons projecting to the facial and hypoglossal nuclei in the rat. J Comp Neurol. 1997; 378(2): 283–294, indexed in Pubmed: 9120066.
  • 31. Mattson MP. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci. 2008; 1144: 97–112, doi: 10.1196/annals.1418.005, indexed in Pubmed: 19076369.
  • 32. McCall A, Glaeser BS, Millington W, et al. Monosodium glutamate neurotoxicity, hyperosmolarity, and bloodbrain barrier dysfunction. Neurobehav Toxicol. 1979; 1(4): 279–283, indexed in Pubmed: 121936.
  • 33. Michaelis EK. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol. 1998; 54(4): 369–415, indexed in Pubmed: 9522394.
  • 34. Ndountse LT, Chan HM. Role of N-methyl-D-aspartate receptors in polychlorinated biphenyl mediated neurotoxicity. Toxicol Lett. 2009; 184(1): 50–55, doi: 10.1016/j.toxlet.2008.10.013, indexed in Pubmed: 19022367.
  • 35. Oser BL, Carson S, Vogin EE, et al. Oral and subcutaneous administration of monosodium glutamate to infant rodents and dogs. Nature. 1971; 229(5284): 411–413, indexed in Pubmed: 4926993.
  • 36. Patel M, Day BJ, Crapo JD, et al. Requirement for superoxide in excitotoxic cell death. Neuron. 1996; 16(2): 345–355, indexed in Pubmed: 8789949.
  • 37. Prastiwi D, Djunaidi A, Partadiredja G. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats. Hum Exp Toxicol. 2015; 34(11): 1171–1179, doi: 10.1177/0960327115572706, indexed in Pubmed: 25697849.
  • 38. Quines CB, Rosa SG, Da Rocha JT, et al. Monosodium glutamate, a food additive, induces depressive-like and anxiogenic-like behaviors in young rats. Life Sci. 2014; 107(1-2): 27–31, doi: 10.1016/j.lfs.2014.04.032, indexed in Pubmed: 24802127.
  • 39. Regan JW, Roeske WR, Ruth WH, et al. Reductions in retinal gamma-aminobutyric acid (GABA) content and in [3H]flunitrazepam binding after postnatal monosodium glutamate injections in rats. J Pharmacol Exp Ther. 1981; 218(3): 791–796, indexed in Pubmed: 6267248.
  • 40. Rivera-Cervantes MC, Torres JS, Feria-Velasco A, et al. NMDA and AMPA receptor expression and cortical neuronal death are associated with p38 in glutamate-induced excitotoxicity in vivo. J Neurosci Res. 2004; 76(5): 678–687, doi: 10.1002/jnr.20103, indexed in Pubmed: 15139026.
  • 41. Robinson MB, Coyle JT. Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application. FASEB J. 1987; 1(6): 446–455, indexed in Pubmed: 2890549.
  • 42. Shah SA, Yoon GHo, Kim HO, et al. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain. Neurochem Res. 2015; 40(5): 875–884, doi: 10.1007/s11064-015-1540-2, indexed in Pubmed: 25701025.
  • 43. Stafstrom CE. The role of glutamate transporters in developmental epilepsy: a concept in flux. Epilepsy Curr. 2004; 4(6): 243–244, doi: 10.1111/j.1535-7597.2004.46009.x, indexed in Pubmed: 16059514.
  • 44. Takada M, Itoh K, Yasui Y, et al. Distribution of premotor neurons for orbicularis oculi motoneurons in the cat, with particular reference to possible pathways for blink reflex. Neurosci Lett. 1984; 50(1-3): 251–255, indexed in Pubmed: 6493629.
  • 45. Travers JB. Oromotor Nuclei. In: George Paxinos, Oromotor Nuclei. Academic Press 2015: 223–245.
  • 46. Ureña-Guerrero ME, López-Pérez SJ, Beas-Zárate C. Neonatal monosodium glutamate treatment modifies glutamic acid decarboxylase activity during rat brain postnatal development. Neurochem Int. 2003; 42(4): 269–276, indexed in Pubmed: 12470699.
  • 47. van Rijn CM, Marani E, Rietveld WJ. The neurotoxic effect of monosodium glutamate (MSG) on the retinal ganglion cells of the albino rat. Histol Histopathol. 1986; 1(3): 291–295, indexed in Pubmed: 2980121.
  • 48. Wagoner JL, Kulesza RJ. Topographical and cellular distribution of perineuronal nets in the human cochlear nucleus. Hear Res. 2009; 254(1-2): 42–53, doi: 10.1016/j.heares.2009.04.008, indexed in Pubmed: 19383535.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9e81ed4d-c88c-43a4-84cc-d12402787b78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.