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Summary. The relaxation spectrum is a characteristic quantity 

the spectrum, it is very easy to convert one material function into 

another one. The paper deals with the problems of recovery of the 

spectrum of relaxation frequencies of linear viscoelastic materials 

from discrete-time noise corrupted measurements of relaxation 

of nonnegative power basis functions is presented. It is proved that 

series of functions based on complementary error function. The 

-
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INTRODUCTION

The last three decades have witnessed an increasing 

amount of interest paid to the study on mechanical proper-

ties of viscoelastic materials treating it as a separated sub-

ject area [11, ].

to modeling of different polymeric liquids and solids 

[ ], concrete [ ], soils and rocks [ ], different 

composite materials [ ], metals and their alloys [ ,21],

foods [ , ] and many biological materials [ ,14], in 

particular fruits and vegetables [7, 4,18]. The need 

for detailed knowledge of mechanical material functions 

has been growing with the increased use of accurate engi-

neering methods for rigorous predictions of the materials 

behavior, such as the finite element method, the boundary 

element method and the finite difference method [1].

The mechanical properties of linear viscoelastic mate-

rials are characterized by relaxation or retardation spectra 

[ ]. The spectra are vital not only for constitutive mod-

rials are characterized by relaxation or retardation spectra 

[ ]. The spectra are vital not only for constitutive mod-

els but also for the insight into the properties of a viscoe-

lastic material, since from the relaxation or retardation 

spectrum any other linear material functions can be calcu-

lated without difficulty. Hence the identification of relaxa-

tion spectrum is one of the actual directions of the mathe-

matical modelling of many viscoelastic materials. Since 

the problem of relaxation spectrum identification is one of 

the classical ill-posed inverse problems [ 18], an appro-

priate special identification methods must be find to over-

come the mathematical difficulties.

during the last two decades for the relaxation spectrum 

computation using the data from a small-amplitude oscil-

latory shear experiment. For references and an overview, 

[ ]. However, a classical manner of 

studying viscoelasticity for many materials is by two-

phase stress relaxation test . There are a few pa-

pers: [5,2 ] and [18- ] as well as the previous papers by 

the present author cited therein, that deal with the spec-

trum determination from stress relaxation data. However, 

in all the known methods of the relaxation spectrum iden-

tification from time-measured data the restriction that the

spectrum is nonnegative, which must be given to satisfy 

the physical meaning is, unfortunately, neglected. The 

identification scheme presented in this paper overcomes 

this limitation.

In this paper the spectrum is recovered from discrete-

time noise corrupted measurements of relaxation modulus 

obtained in stress relaxation test. The approach proposed 

is based on approximation of the spectrum by finite linear 

t-

ic identification index, which refers to the measured relax-

ation modulus, is adopted and the nonnegativity con-

straints on the model parameters are introduced. The stat-

ed linear least-squares approximation task with inequality 

constraints is solved by using the dual approach. The result-

ing identification scheme is presented and verified for nu-
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H . The lower index of KH is the number of model 
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The form of the basis functions t,k (8) is given by the 

following theorem; the proof is omitted due to space limi-

tations.
Theorem 1. Let k , and t . Then the basis 

functions t,k are given by recursive formula:

of K terms of the form: K
k kk v,hg1 . The norms of 

the basic functions v,hk are given by:
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Here
2

denotes the square norm in the space ,L2 .

It is easy to check that for any fixed the sequence of 

norms increases or decreases very quickly depending 

on the parameter . Thus, in order to guarantee the nu-

merical stability of the resulting identification algorithm

the basis functions (2) are replaced by following normal-

ized functions: 
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where t
x dxeterfc

2
2 is complementary error 

function [4].

Thus, the problem of the continuous relaxation spec-

trum H approximation by finite series KH of the 

is reduced to problem of the relaxation modulus 

tG approximation by finite linear combination (7) of the 

functions t,k -(11) based on complementary error 

function 2terfc . used in signal 

processing and mathematical modelling of many process-

es, e.g., [4, 22]. ,hk

~
(4) are 

shown in Figure 1 for two different values of the parame-

ter ; the corresponding functions t,k -(11) are 

plotted in Figure 2. From the Figure 2, it is evident that the 

basis functions t, are congruent to the real relaxa-

ing identification scheme is presented and verified for nu-

merical data as well as for selected biological material.

In the rheological literature it is commonly assumed 

that the relaxation modulus tG of linear viscoelastic 

material has the following integral representation [ ,2 ]:

deHtG t , (1)

where: the nonnegative relaxation spectrum H charac-

terizes the distribution of relaxation frequencies .

Throughout we shall be concerned with the case when 

H is completely unknown. The relaxation modulus 

tG can be, however, measured for any time t .

,LH 2 , where ,L2 is the 

space of square-integrating functions in the interval , .

The set of the linearly independent functions:

222 2 ,,e,e,e (2)

forms a basis of the space ,L2 [2]. Thus the relaxa-

tion spectrum can be expressed as 

k kk v,hgH , where: kg are constant model 

parameters and the basis functions
2vk

k evv,h ,

,,k 1 . . Since for real materials the relaxation spec-

trum tends to zero as the relaxation frequency approaches 

zero from above, i.e., the right-sided limit 

Hlim
v

, the first basis function can be neglect-

ed. For practical reasons, it is convenient to replace the 

infinite summation in the above formula with a finite one 

:
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basis functions t,k are congruent to the real relaxa-

tion modulus obtained in experiment. The positive param-

eter is a time-scaling factor.

It is well-known [ 18, ] that for many materials 

GtGlimt , where G is the long-term modu-

lus (see example 2 below). Thus, instead of the classical 

model (1), it is convenient to consider the following aug-

mented model:

Fig. 2. The basis functions t,k , the parameters:

(a) and (b) ,

k

(a) 22 s, and (b) 22 s , 421 ,,,kFig. 2.
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GtGGdeHtG K
t

KK . (12)

Then, the relaxation spectrum model takes the form:

GHH KK ,

where: denotes the Dirac delta function. Unbounded 

component G of the relaxation spectrum KH

corresponds with the infinite relaxation time. 

Suppose, a finite discrete experiment (stress relaxation 

test ) performed on the specimen of the material 

under investigation resulted in a set of measurements of

the modulus iii tztGtG at the sampling instants 

it , ,N,i 1 , where itz is measurement noise. Op-

timal identification of the relaxation spectrum H in the 

class of models consists of selecting within the given 

class of models defined by , ( ) such a model, which 

class of models defined by , ( ) such a model, which 

ensures the best fit to the measurement results itG .

a measure of the model accuracy the square approximation 

error is taken:

N
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where:
T

KK Ggg1g is the parameter vector 

of model KH alently of the model 

tGK given by (12), (7). Superscript “T” indicates trans-

pose. Using the vector-matrix notation
T

NN tGtG 1G and:
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the model quality index can be rewritten in the compact 

form as 
2

KN,KNKNQ gGg . Here and further

denotes the norm in the spaces NR and 1KR .

For physically realistic materials the relaxation spectrum 

H is nonnegative definite for any . Thus, the 

requirement that the respective model KH ( is also 

nonnegative for any is natural. The basic functions

,hk

~
(4) are nonnegative. Therefore, if the model pa-

rameters are such that kg for any ,K,k 1 , then the 

model KH is also nonnegative definite function. Ob-

viously, the restriction that the model parameters are 

nonnegative is sufficient, but not necessary condition for 

the non-negation of the spectrum model. Now, the prob-

N,



dimensional problem is fraught with the same diffi-

culties that the original continuous ill-posed problem of 

numerical solution of the Fredholm equation (1). The 

standard minimization methods may fail. To stabilize the 

the non-negation of the spectrum model. Now, the prob-

lem of the relaxation spectrum identification reduces to 

determining the vector of model parameters Kg minimiz-

ing the index KNQ g under the non-negation constraints

kg for ,K,k 1 . Thus, the linear least-squares opti-

mization problem with inequality constraints of the form:

2
KN,KN

KK

min gG
g 0

is stated for the optimal identification of the nonnegative 

relaxation spectrum. K0 is 1K -dimensional zero vec-

tor. The existence and properties of the solution of the 

above task depends on the properties of the matrix KN,

(15). Unfortunately, KN, is usually rank- deficient. The

linear-quadratic task is still ill-conditioned and when 

the data are noisy, even small changes of the data NG

would lead to arbitrarily large artefact in the optimal mod-

el parameters. Therefore, the numerical solution of finite 

dimensional problem is fraught with the same diffi-

solution an additional “smoothing” constraint will be in-

troduced in the next section.

The fluctuations of the solution of optimization task 

(7) may be reduced by introducing an additional direct 

constraint on vector Kg : Kg , where a constant 

N
Kg estimates the „level of smoothness” assumed 

for the model parameters. Here N
Kg is the normal (mini-

-

squares problem without constraints. In result the modified 

problem of optimal relaxation spectrum identification is

obtained:

222
KKN,KN constraintundermin

KK

ggG
g 0

. (17)

i-

pliers) K0 and a price a-

grangian for the optimization task (17):
2

grangian for the optimization task (17):
22

KKKKN,KNK ,,L ggggGg . (18)

The prices aim at providing a fulfillment of the inequal-
The prices aim at providing a fulfillment of the inequal-

ity in original optimization task . The multiplier 

is the price imposed to satisfy the “smoothness” constraint 

in modified task (17). In order to use the dual approach to 

solve the optimization task (17) note, that for an arbitrary 

K0 , and ,,L Kg has 

unique minimum with respect to Kg given by:

2
1

1

NN,KKK,N,KN,KK , GIg ,

where: KK,I is 11 KK identity matrix. Thus, the 

dual function defined by:

,,,L,,Lmin,L KK
R
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can be expressed by convenient analytical formula:

2
1
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where: symmetric matrix
1

KK,N,KN,K IB is 

positive definite for any . It is easy to check that the

Hessian matrix of the dual function takes the form:

2
1

2
1

2
1

2
1

2
1
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NN,K
,H

GBBBGBBG

GBBB
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Since matrix B is positive definite, on the basis of the 

known result concerning the definiteness of block matrices

[12; Theorem Ib''] the Hessian ,H is negative definite 

for an arbitrary K0 . Thus the dual function ,LD

is strictly concave function of the arguments , . Tak-

ing advantage of the above, it may be proved that the solu-

tion to the dual problem:

,L,Lmax DD
,K0

(22)

there exists and the optimal multiplier . It is well 

,,L Kg (18) there exists, then the dual approach can 

be successfully applied to solve (17). In the case consid-

ered the existence of a saddle point to l-

lows immediately from [8; Theorem 1, (ii) and (iii)] due to 

. Thus the vector g ,K is opti-

mal solution of the optimal identification task (17).

The calculation of the relaxation spectrum model in-

volves the following steps.

N, N,

N,

N,

N, N,

N,

,

,



Fig. 3. Relaxation spectrum H (24) (dash line) and the 

nonnegative model KH (solid line)

Fig. 4. Relaxation spectrum H (24) (dash line) and the least-

squares optimal model KH
~ (solid line)

volves the following steps.

1. Perform the experiment - stress relaxation test [17] -

and record the measurements itG of the relaxation 

modulus at time instants it , ,N,i 1 .

2. Compute N
Kg (for simple analytical formula see, e.g., 

[18, eq. (2.24) and the following]) and choose the con-

stant N
Kg .

Solve the dual problem (22) according to the chosen 

numerical procedure, and determine the multipliers 

, maximizing ,LD .

4. Compute the vector gg ,KK of optimal model 

parameters using formula .

5. Determine the model of the spectrum of relaxation 

KH

K

k
kkK v,hgH

1

~
.

Obviously, GHH KK is the relaxation 

spectrum of the form .

Taking advantage of the basic functions v,hk
~

defi-

nitions (4), (5) and the properties of the optimal identifica-

tion problem (17) solution, it may be simply proved that

for KH the following sequence of estimations

hold:

1111 4

1

4

1

K,gK,v,hmaxgvHmax
K

k
k

K

k
k

v
kK

v
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.

Thus the smoothness of the vector Kg guarantees that the 

fluctuations of the respective spectrum of relaxation 

KH are also bounded.

1. For numerical algebraic computations of the scheme 

the singular value decomposition 15] of the matrices 

N,K (15) or N,KN,K may be used - for details see the

N,K N,KN,K

previous papers [18, ].

available nowadays in the form of optimized numerical 

procedures in most commonly used contemporary compu-

tational packets.

2. The matrix KK, (15) depends on the choice of the 

basis functions as well as the sampling instants it , how-

ever, does not depend in the experiment results. Thus, 

when the identification scheme is applied for successive 

samples of the same have 

not to be multiple repeated while the same measurement 

points it are kept.

The relaxation modulus basis functions t,k -

(11) are expressed using complementary error function.

The function terfc is accessible practically in every 

computational packets either directly or by error function 

terfcterf 1 , where 
t x dxeterf 2

2

.

4. In the scheme proposed the parameter is the 

time-scaling factor. The following rule holds: the lower 

the parameter is, the greater are the relaxation frequen-

cies (see F

scaling factor, the best fit of the model to the experimental 

data can be achieved. However, in practice a simple rough 

rule for choosing , based on the comparison of a few 

first functions t,k for different values of with the 

experimentally obtained function tG is quite enough. In 

the same manner the number K

summands can be initially evaluated. Thus, the choice 

both of the number K as well as the parameter must be 

done a posteriori, after the preliminary experiment data 

analysis. 

To illustrate our approach we consider viscoelastic ma-
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The problem of the optimal least-squares approxima-

-

-

tion is reduced to the static linear-quadratic programming 

task with inequality constraints. The dual approach is suc-

-

cation scheme is presented. The validity and effectiveness 

of the method is demonstrated both by numerical example 

as well as by through the computation of the relaxation 

spectrum of the specimen of selected biological material.

1. Antoun B., Qi H.J., Hall R., G.P., Lu H., Lu Ch. (Eds), 

2013: -

-

2.

Dealy J., Larson R.G., 2006: Structure and rheology of 

4. -

ical aspects of a generalization of the complementary 

5. Fujihara S., Yamamoto R., Masuda Y., 1995: -

wellian Spectra of Stress Relaxation in the Cell Wall and 

Proceedings of International Workshop Stress Relaxa-

2003: -

ical hardiness of sugar beet analysis in the context of 

practical mechanical loads”, 1–214 [in Polish].

7. Guz T., 2009: 

elasticity modulus in apples stored in ulo and regular 

8. Hasiewicz Z., Stankiewicz A., 1985:Fig. 5. The models KH (solid line) and KH
~

(dash line) of 

the relaxation spectrum of the sample of beet sugar root

has been sampled at N sampling instants at the con-

stant period s,t . The parameters 8K and 
2s, are chosen according to the suggestions of 

Remark 4. Since 8,N
Kg , the constant 2, is

assumed. Then the vector of the optimal model parameters 

Kg is determined. The “real” relaxation spectrum H

(24) and the resulting nonnegative definite model KH

KH
~

least-squares method without constraints (for detailed de-

is given in Figure 4.

I

r and height 

].

and co-workers is described in details in [ ]. The experi-

ment was performed in the state of uniaxial deformation; 

i.e. the specimen examined underwent deformation in steel 

cylinder. The modeling of mechanical properties of this 

material in linear-viscoelastic regime is justified by the 

research results presented in a lot of works, for references 

see [ ,18]. In the initial phase of the stress relaxation test 

the strain was imposed instantaneously, the sample was 

precondi -1] strain rate to the assumed 

strain. Next, during the second phase at constant strain, the 

corresponding time-varying force induced in the speci-

men, which decreases with time, was recorded during the 

time period 2;5 ,,

with the constant sampling period s,t 1 . The way 

how the experiment data has been preliminary proceeded 

is described in [18]. Next the proposed identification 

scheme was applied. Since 51 E,N
Kg , the constant 

is assumed. The parameters 8K and 2s

were chosen. The resulting optimal nonnegative relaxation 

spectrum KH is plotted in Figure 5, where the relaxa-

tion spectrum model KH
~

sense of regularized least-squares without constrains is

also shown. The respective optimal long-term modulus are 

following: MPa,G and MPa,G 782
~

.

72

2

1
2

eH . (24)

The relaxation modulus corrupted by additive noises tz

of the uniform distribution in the interval Pa,, ;

Relaxation frequency v [s-1]

R
el

ax
at

io
n
 s

p
ec

tr
u

m
 [

]

, , , ,1 1



Sim-

ulating stress–sinkage under a plate sinkage test using 

and concentration on rheolog1cal properties of tomato 

11. Kontopoulou M. (Ed), 2012: -

12. Kreindler E., Jameson A., 1972: Conditions for non-

17(1), 147–148.

Lakes R. S., 2009: 

University Press, Cambridge.

14. Prorok B.C., Barthelat F., Korach Ch.S., Grande-Al-

len J.J., Lipke E., Lykofatitits G., Zavattieri P., (Eds), 

2013:

15. Schwetlick A.H., 1988: Numerische lineare algebra. 

Singh A.P., Lakes R.S., Gunasekaran S., 2006: -

lastic characterization of selected foods over an extended 

frequency range. Rheologica ,

17. Sorvari J., Malinen M., 2006: Determination of the 

relaxation modulus of a linearly viscoelastic mate-

18. Stankiewicz A., 2007: 

spectrum of viscoelastic plant materials. Ph. D. Thesis,

Stankiewicz A., 2010:

and retardation spectra of plant viscoelastic materials 

-

Stankiewicz A., 2012: 

of the relaxation spectrum of viscoelastic materials from 

-

21. Wang S., Qi J., Yao X., 2011: Stress relaxation char-

acteristics of warm frozen clay under triaxial con-

112–117. 

22. Yeung A.T., Mitchell J.K., 1993: -

Continuous Relaxation Spec-

-

Streszczenie. -

-

-

-

-

-

-




