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Summary. The relaxation spectrum is a characteristic quantity
describing the viscoelastic properties of many materials. Given
the spectrum, it is very easy to convert one material function into
another one. The paper deals with the problems of recovery of the
spectrum of relaxation frequencies of linear viscoelastic materials
from discrete-time noise corrupted measurements of relaxation
modulus obtained in stress relaxation test. A new concept of the
approximation of continuous relaxation spectrum by the finite series
of nonnegative power basis functions is presented. It is proved that
the respective model of the relaxation modulus is given by finite
series of functions based on complementary error function. The
optimal scheme of the least-squares identification of nonnegative
definite model of relaxation spectrum is proposed. The validity of the
method is demonstrated using simulated data of Gaussian spectrum.
Applying the proposed scheme, the relaxation spectrum of a con-
fined cylindrical specimen of the sugar beet root is also determined.
Key words: viscoelasticity, relaxation spectrum, identification,
error functions.

INTRODUCTION

The last three decades have witnessed an increasing
amount of interest paid to the study on mechanical proper-
ties of viscoelastic materials treating it as a separated sub-
ject area [11,13]. Viscoelastic models are used before all
to modeling of different polymeric liquids and solids
[3,11,13], concrete [13], soils and rocks [9], different
composite materials [13], metals and their alloys [13,21],
foods [13,16] and many biological materials [13,14], in
particular fruits and vegetables [7,10,13,14,18]. The need
for detailed knowledge of mechanical material functions
has been growing with the increased use of accurate engi-
neering methods for rigorous predictions of the materials
behavior, such as the finite element method, the boundary
element method and the finite difference method [1].

The mechanical properties of linear viscoelastic mate-
rials are characterized by relaxation or retardation spectra

[3,13]. The spectra are vital not only for constitutive mod-
els but also for the insight into the properties of a viscoe-
lastic material, since from the relaxation or retardation
spectrum any other linear material functions can be calcu-
lated without difficulty. Hence the identification of relaxa-
tion spectrum is one of the actual directions of the mathe-
matical modelling of many viscoelastic materials. Since
the problem of relaxation spectrum identification is one of
the classical ill-posed inverse problems [13,18], an appro-
priate special identification methods must be find to over-
come the mathematical difficulties.

A number of different methods have been proposed
during the last two decades for the relaxation spectrum
computation using the data from a small-amplitude oscil-
latory shear experiment. For references and an overview,
see Dealy and Larson [3]. However, a classical manner of
studying viscoelasticity for many materials is by two-
phase stress relaxation test [13,17]. There are a few pa-
pers: [5,23] and [18-20] as well as the previous papers by
the present author cited therein, that deal with the spec-
trum determination from stress relaxation data. However,
in all the known methods of the relaxation spectrum iden-
tification from time-measured data the restriction that the
spectrum is nonnegative, which must be given to satisfy
the physical meaning is, unfortunately, neglected. The
identification scheme presented in this paper overcomes
this limitation.

In this paper the spectrum is recovered from discrete-
time noise corrupted measurements of relaxation modulus
obtained in stress relaxation test. The approach proposed
is based on approximation of the spectrum by finite linear
combination of the basis exponential functions. A quadrat-
ic identification index, which refers to the measured relax-
ation modulus, is adopted and the nonnegativity con-
straints on the model parameters are introduced. The stat-
ed linear least-squares approximation task with inequality
constraints is solved by using the dual approach. The result-
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ing identification scheme is presented and verified for nu-
merical data as well as for selected biological material.

RELAXATION SPECTRUM

In the rheological literature it is commonly assumed
that the relaxation modulus G(¢) of linear viscoelastic

material has the following integral representation [13,20]:

G(t)zo(jo(v)e_”’dv ,

(M

where: the nonnegative relaxation spectrum H(v) charac-

terizes the distribution of relaxation frequencies v=>0.
Throughout we shall be concerned with the case when
H(v) is completely unknown. The relaxation modulus

G(t) can be, however, measured for any time 7>0.

MODELS

Assume that H(v)eL,(0,0), where L,(0,00) is the
space of square-integrating functions in the interval (0,00).
The set of the linearly independent functions:

2 2 2
{e’“‘/ ve @ yre . } a>0 )
forms a basis of the space L,(0,00) [2]. Thus the relaxa-
be
H()=>%0g: (v,a), where: g, are constant model

tion spectrum can expressed as

: . _ ok —a?
parameters and the basis functions &, (v,a)=v" e ™™ ,
k=0,,.... . Since for real materials the relaxation spec-
trum tends to zero as the relaxation frequency approaches

zero from above, i.e., the right-sided limit
lim_ . H (v)=0, the first basis function can be neglect-

ed. For practical reasons, it is convenient to replace the
infinite summation in the above formula with a finite one

of K terms of the form: Y&, g, / (v,). The norms of

the basic functions /4 (v,«) are given by:

A 2i-1) |
= é2k+lak %' ©)

Here || - |, denotes the square norm in the space L, (0,0).

o0
g = e av

It is easy to check that for any fixed « the sequence of
norms (3) increases or decreases very quickly depending
on the parameter «. Thus, in order to guarantee the nu-
merical stability of the resulting identification algorithm
the basis functions (2) are replaced by following normal-
ized functions:

h(v,a)=y(apre™  for k=12,...,

“)
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where, by virtue of (3), the weights y, are defined by:

2"r\/5/n Qj-1) for k=12,....(5

Thus the finite sum:

K ~
H ()= % g1 Fi(ve) ©

will be used to approximate the relaxation spectrum
H(v). The lower index of Hy(v) is the number of model
summands. According to equation (1) the respective mod-
el of the relaxation modulus G(¢) is described by:

Gl)=[H W) av=3 g ala).
where:
&, (1 a):T h,(v,a)e™ dv (8)

The form of the basis functions ¢ (¢,) (8) is given by the

following theorem; the proof is omitted due to space limi-
tations.
Theorem 1. Let k>0, a>0 and t=0 . Then the basis

functions ¢, (t,&) are given by recursive formula:

2 k k-1
ralte)=— e g0 L g 0|
k>1, 9)
starting with:
do(t.a)= 4= e““ erfc(zjgj, (10)
¢ (t0)= 24\lﬁ —7¢0(f a), (11

where: erfe(t)=—2

2
function [4].

Thus, the problem of the continuous relaxation spec-
trum H(v) approximation by finite series Hy (v) of the

is complementary error

form (6) is reduced to problem of the relaxation modulus
G(¢) approximation by finite linear combination (7) of the

functions ¢ (£, ) (9)-(11) based on complementary error
function erfc[t/ (2\/5 )] Error functions are used in signal
processing and mathematical modelling of many process-
es, e.g., [4, 22]. A few first basis functions % (v.a) (4) are

shown in Figure 1 for two different values of the parame-
ter «; the corresponding functions ¢ (¢,a) (9)-(11) are

plotted in Figure 2. From the Figure 2, it is evident that the
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basis functions ¢ (z,a) are congruent to the real relaxa-

tion modulus obtained in experiment. The positive param-
eter o is a time-scaling factor.

It is well-known [13,18,19] that for many materials
lim,_,., G(t)=G,, >0, where G, is the long-term modu-

lus (see example 2 below). Thus, instead of the classical
model (1), it is convenient to consider the following aug-
mented model:

G (t):THK (Ve Vdv+G, =Gk (t)+G,. (12)
0

Then, the relaxation spectrum model takes the form:

Hyg(v)=Hg (v)+G5(v), (13)
where: 5(v) denotes the Dirac delta function. Unbounded
component G, 5(v) of the relaxation spectrum H g (v)
(13) corresponds with the infinite relaxation time.

RELAXATION SPECTRUM APPROXIMATION

Suppose, a finite discrete experiment (stress relaxation
test [13,17]) performed on the specimen of the material
under investigation resulted in a set of measurements of
the modulus G(¢;)=G(¢;)+z(¢;) at the sampling instants
t;,20,i=1,..,N, where z(z;) is measurement noise. Op-
timal identification of the relaxation spectrum H(v) in the

class of models (13) consists of selecting within the given
class of models defined by (13), (6) such a model, which
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ensures the best fit to the measurement results {G(7;)}. As

a measure of the model accuracy the square approximation
error is taken:

[é(ti )- Gk (¢ )]2 )

M=

Oy(gk)= (14)

Il
—_

where: gx=[g, ... gx G, is the parameter vector
of model H, K(v) (13), (6) or equivalently of the model
G (t) given by (12), (7). Superscript “7” indicates trans-

pose. Using the vector-matrix notation
Gy=[G(1) ... G(ty)] and:
H(ta) ... dx(ta) 1
i = : : iR (15)

hty.a) ... ¢ty a) 1

the model quality index can be rewritten in the compact

form as Oy (gx)=|Gy—¥rx gKH2 . Here and further | - |
denotes the Euclidean norm in the spaces R N and R
For physically realistic materials the relaxation spectrum

H(v) is nonnegative definite for any v>0. Thus, the
requirement that the respective model Hy (v) (6) is also
nonnegative for any v >0 is natural. The basic functions
Zk (va) (4) are nonnegative. Therefore, if the model pa-
rameters are such that g, >0 for any k=1,...,K, then the
model Hg (v) is also nonnegative definite function. Ob-

viously, the restriction that the model parameters are
nonnegative is sufficient, but not necessary condition for

~ ~ \
hk (V, a) 0,9 1 55
k=1
k=2
k=3
k=4 .o =
—_ 0 0
0 2 4 6 0 0,5 1 1,5 2
@ Relaxation frequency v [s™'] (b)  Relaxation frequency v [s™']

Fig. 1. The basis functions Zk(y,a) (4) for parameters: (a) ¢ =02 [52] and (b) ¢ =2 [s2], k=12734

$e(ta)

(@) Time ¢ [s]

(b) Time ¢ [s]

Fig. 2. The basis functions ¢, (+,«), the parameters: (a) o =0,2 [52] and (b) ¢ =2 [sz], k=123,4
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the non-negation of the spectrum model. Now, the prob-
lem of the relaxation spectrum identification reduces to
determining the vector of model parameters gz minimiz-

ing the index QO /(gx) under the non-negation constraints
g, 20 for k=1,...,K . Thus, the linear least-squares opti-
mization problem with inequality constraints of the form:

(16)

8x20k

is stated for the optimal identification of the nonnegative
relaxation spectrum. 04 is (K +1)-dimensional zero vec-
tor. The existence and properties of the solution of the
above task depends on the properties of the matrix ¥y x
(15). Unfortunately, ¥y ¢ is usually rank- deficient. The
linear-quadratic task (16) is still ill-conditioned and when
the data are noisy, even small changes of the data G

would lead to arbitrarily large artefact in the optimal mod-
el parameters. Therefore, the numerical solution of finite

Lp(Ay)=Gy' Gy—1p’ - [‘FN,KT 6N+%}"]] B[Y'MKT 6N+%ﬂ],

H(Ay)=

dimensional problem (16) is fraught with the same diffi-
culties that the original continuous ill-posed problem of
numerical solution of the Fredholm equation (1). The
standard minimization methods may fail. To stabilize the
solution an additional “smoothing” constraint will be in-
troduced in the next section.

OPTIMAL IDENTIFICATION PROBLEM

The fluctuations of the solution of optimization task
(7) may be reduced by introducing an additional direct
constraint on vector gg : HgKHSﬂ, where a constant

0<p< Hg,’}’ H estimates the ,,level of smoothness” assumed

for the model parameters. Here g2 is the normal (mini-
mum Euclidean norm) solution of the original least-
squares problem without constraints. In result the modified
problem of optimal relaxation spectrum identification is
obtained:

min H?;N_TN,K gKHZ under constraint HgKH2 <pr. a7
820k

By introducing a vector of prices (Lagrangian multi-
pliers) A>04 and a price y>0 we can define the La-

grangian for the optimization task (17):

—%B
[Y’NKT 6N+%A]T BB
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L(gk . Ay)=|Gy—Pyk gKH2 -7 gK+7(g1<Tg1<—ﬂ2)- (18)

The prices A aim at providing a fulfillment of the inequal-
ity in original optimization task (16). The multiplier y >0
is the price imposed to satisfy the “smoothness” constraint
in modified task (17). In order to use the dual approach to
solve the optimization task (17) note, that for an arbitrary
A>0 , y>0 and B>0 the Lagrangian L(gg 4 y) has

unique minimum with respect to g given by:

8x (&y):[TNKTTMK +yigk Tl [TN,KT 6N+%ﬂ], (19)

where: Iy is (K+1)x(K+1) identity matrix. Thus, the
dual function defined by:

Lp(Ay)= min Ligk.Ar)=U&x(Ay)Ay)  (Q0)
8k €
can be expressed by convenient analytical formula:

@)

1
where: symmetric matrix B= [TN, KTY’N xk Tk r is
positive definite for any y >0. It is easy to check that the
Hessian matrix of the dual function takes the form:

BB[Y’MKT 6N+;/1]
_2[5UNKT 6N+%,1]T BBB[‘PNKT 6N+%,1] '

Since matrix B is positive definite, on the basis of the
known result concerning the definiteness of block matrices
[12; Theorem Iy the Hessian H(A,y) is negative definite
for an arbitrary 4>0y . Thus the dual function L,(4y)
is strictly concave function of the arguments (4,7). Tak-
ing advantage of the above, it may be proved that the solu-
tion to the dual problem:

max  Lp(A7)=Lp(A7),

A20 720

(22)

there exists and the optimal multiplier 7>0. It is well

known that if the saddle point of the Lagrangian
L(gg .Ay) (18) there exists, then the dual approach can

be successfully applied to solve (17). In the case consid-
ered the existence of a saddle point to the Lagrangian fol-
lows immediately from [8; Theorem 1, (ii) and (iii)] due to

the uniqueness of (19). Thus the vector gx|\A4,7) is opti-
mal solution of the optimal identification task (17).

IDENTIFICATION SCHEME

The calculation of the relaxation spectrum model in-
volves the following steps.
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1. Perform the experiment - stress relaxation test [17] -
and record the measurements G (¢;) of the relaxation

modulus at time instants #; >0, i=1,...,N.
2. Compute Hg,]}’ H (for simple analytical formula see, e.g.,

[18, eq. (2.24) and the following]) and choose the con-
stant 0<,6'<H§1]¥H .

3. Solve the dual problem (22) according to the chosen
numerical procedure, and determine the multipliers
(ﬂA. }7) maximizing Lp, (/?:, }?)

4. Compute the vector gx =gg (/{}7) of optimal model
parameters using formula (19).

5. Determine the model of the spectrum of relaxation
Hy (v) according to (cf. (6)):

~ ~

HK(V):]E] S (v.a). (23)

Obviously, Hy(v)=H(v)+G,8(v) is the relaxation
spectrum of the form (13).

Taking advantage of the basic functions Zk(v,a) defi-
nitions (4), (5) and the properties of the optimal identifica-
tion problem (17) solution, it may be simply proved that
for Hy(v) (23) the following sequence of estimations
hold:

n K
max
v=0 k=1

v=0

Thus the smoothness of the vector g, guarantees that the
fluctuations of the respective spectrum of relaxation
Hy (v) are also bounded.

SOME REMARKS
1. For numerical algebraic computations of the scheme

the singular value decomposition SVD [15] of the matrices
Py (15)or Y’N’KT‘FN,K may be used - for details see the

0,05 v

Relaxation spectrum [Pa-s]

Relaxation frequency v [s™']

Fig. 3. Relaxation spectrum H(v) (24) (dash line) and the
nonnegative model H(v) (solid line)
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previous papers [18, 19]. Efficient algorithms for SVD are
available nowadays in the form of optimized numerical
procedures in most commonly used contemporary compu-
tational packets.

2. The matrix ¥y (15) depends on the choice of the

basis functions as well as the sampling instants {¢; }, how-

ever, does not depend in the experiment results. Thus,
when the identification scheme is applied for successive
samples of the same material, the SVD computations have
not to be multiple repeated while the same measurement
points {z; } are kept.

3. The relaxation modulus basis functions ¢ (t,a) (9)-

(11) are expressed using complementary error function.
The function erfe(t) is accessible practically in every

computational packets either directly or by error function
2
erf (t)=1—erfc(t), where erf(t)=-%[1e™™ dx.

Va
4. In the scheme proposed the parameter >0 is the
time-scaling factor. The following rule holds: the lower
the parameter ¢ is, the greater are the relaxation frequen-
cies (see Figures 1 and 2). By the optimal choice of the
scaling factor, the best fit of the model to the experimental
data can be achieved. However, in practice a simple rough
rule for choosing o, based on the comparison of a few
first functions ¢ (z,a) for different values of o with the

experimentally obtained function G (¢) is quite enough. In
the same manner the number K of the models (6) and (7)

~ K
Ap(v)< X & max iy (v.a) <1084 ‘\‘/E\/Kﬂkagk <1,084 YK +18.

summands can be initially evaluated. Thus, the choice
both of the number K as well as the parameter & must be
done a posteriori, after the preliminary experiment data
analysis.

NUMERICAL EXAMPLE

To illustrate our approach we consider viscoelastic ma-
terial whose relaxation spectrum is described by the Gauss
distribution:

0,05 [

Relaxation spectrum [Pa-s]

Relaxation frequency v [s”']

Fig. 4. Relaxation spectrum FH(v) (24) (dash line) and the least-

squares optimal model A (v) (solid line)
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2
H(v)=—f=e "2 m, (24)

The relaxation modulus corrupted by additive noises z(z)
of the uniform distribution in the interval [-0,02;0,02] Pa
has been sampled at N =200 sampling instants at the con-
stant period Ar=0,003[s]. The parameters K=8 and

a=0,003 [sz] are chosen according to the suggestions of

Remark 4. Since ngll(v H:8,692, the constant f=0,2 is

assumed. Then the vector of the optimal model parameters
gy is determined. The “real” relaxation spectrum H(v)

(24) and the resulting nonnegative definite model H (V)
(23) are plotted in Figure 3. For comparison, the model
H x(v) of the form (6) determined using the regularized

least-squares method without constraints (for detailed de-
scription see, e.g., [18,19]) is given in Figure 4.

RELAXATION SPECTRUM
OF THE REAL BIOLOGICAL MATERIAL

A cylindrical sample of 20 mm diameter and height
was obtained from the root of sugar beet Janus variety [6].
The stress relaxation experiment performed by Gotacki
and co-workers is described in details in [6]. The experi-
ment was performed in the state of uniaxial deformation;
i.e. the specimen examined underwent deformation in steel
cylinder. The modeling of mechanical properties of this
material in linear-viscoelastic regime is justified by the
research results presented in a lot of works, for references
see [6,18]. In the initial phase of the stress relaxation test
the strain was imposed instantaneously, the sample was
preconditioned at the 0,5 [m~s'1] strain rate to the assumed
strain. Next, during the second phase at constant strain, the
corresponding time-varying force induced in the speci-
men, which decreases with time, was recorded during the
time period [0,5;96,2] seconds in 958 measurement points

with the constant sampling period Ar =0,1 [s] The way

how the experiment data has been preliminary proceeded
is described in [18]. Next the proposed identification

scheme was applied. Since ng,l(v H =1,804E +5, the constant

Relaxation spectrum [MPa-s]

0,0001

0,001

0,01 0,1 1 10

Relaxation frequency v [s”']

Fig. 5. The models Ay (v) (solid line) and A (v) (dash line) of
the relaxation spectrum of the sample of beet sugar root
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=50 is assumed. The parameters K=8 and a = 98[s2]
were chosen. The resulting optimal nonnegative relaxation
spectrum H (v) is plotted in Figure 5, where the relaxa-

tion spectrum model A (v) of the class (6) optimal in the
sense of regularized least-squares without constrains is
also shown. The respective optimal long-term modulus are
following: G,, =9,957 MPa and G,, =9,782 MPa..

CONCLUSIONS

The problem of the optimal least-squares approxima-
tion of the relaxation spectrum by finite series of nonneg-
ative power basis functions is stated. The primary infinite
dimensional problem of the relaxation spectrum identifica-
tion is reduced to the static linear-quadratic programming
task with inequality constraints. The dual approach is suc-
cessfully applied to solved this task and resulting identifi-
cation scheme is presented. The validity and effectiveness
of the method is demonstrated both by numerical example
as well as by through the computation of the relaxation
spectrum of the specimen of selected biological material.
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O WYZNACZANIU NIEUJEMNEGO
SPEKTRUM RELAKSACII
MATERIALOW LEPKOSPREZYSTYCH
Z WYKORZYSTANIEM FUNKCIJI
RESZTKOWYCH BLEDU

Streszczenie. Spektrum relaksacji naprezen charakteryzuje lep-
kosprezyste whasnosci materiatdw. Przedmiotem pracy jest prob-
lem wyznaczania spektrum czgstotliwosci relaksacji liniowych
materiatlow lepkosprezystych na podstawie dyskretnych, zakto-
conych pomiaréw modutu relaksacji zgromadzonych w tescie
relaksacji naprezen. Przedstawiono nowa metodg aproksymacji
ciggtego spektrum relaksacji skonczonym szeregiem nieujem-
nie okreslonych wyktadniczych funkcji bazowych optymalne;j
w sensie najmniejszej sumy kwadratow. Pokazano, ze funkcje
bazowe odpowiedniego modelu modutu relaksacji dane sa prosta
regulg rekurencyjna i bazujg na funkcji resztkowej btedu. Prob-
lem optymalnej identyfikacji nieujemnego spektrum relaksacji
rozwigzano stosujac podejscie dualne. Przedstawiono schemat
obliczeniowy algorytmu identyfikacji. Metode zilustrowano
przyktadem numerycznym. Wyznaczono takze spektrum relak-
sacji probki buraka cukrowego badanego w stanie jednoosiowego
odksztatcenia przy zakldconych pomiarach sily reakcji probki.
Stowa Kkluczowe: lepkosprezystosé, spektrum relaksacji napre-
zen, identyfikacja, funkcje resztkowe blgdu.






