PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 5 |

Tytuł artykułu

Organic substrates for intensive horticultural cultures: yield and nutrient status of plants, microbiological patameters of substrates

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of our studies was to determine the suitability of organic substrate: peat, coconut fiber with a 20% admixture of chips, and coconut fiber with a 40% admixture of chips (as alternative substrates in relation to rockwool) in intensive horticultural cultures with fertigation adopted as the fertilization method. Tomato was the model plant in this study. Evaluations comprised yielding of plants, contents of macro- and microelements in leaves and fruits, plus changes in the counts of different groups of microorganisms: bacteria, fungi, Actinomycetes, and dehydrogenase activity in the root medium of plants during their vegetation. The significantly highest total yield of plants was found in the case of plants grown in peat and in coconut fiber with a higher (40%) content of chips (9.28 kg∙m⁻² each) in relation to rockwool (8.35 kg∙m⁻²). A similar trend was recorded in the case of commercial yield. Applied substrates significantly modified yielding fruit of grades I-VI. Despite the recorded significant modifying effect of the substrate on nutrient contents in leaves and fruits of plants grown in it, no visual symptoms of their deficiencies were observed, which indicates an adequate plant nutrition in both rockwool and organic substrates. Analyzed organic substrates are perfectly suitable for application in intensive culture of vegetables under cover. After the completion of the plants' cultivation cycle they become valuable organic fertilizer, exhibiting advantageous microbiological parameters, i.e. relatively high counts of fungi, bacteria, and Actinomycetes, as well as dehydrogenase activity, which may improve the fertility of the soil on which they have been utilized.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

5

Opis fizyczny

p.1261-1271,fig.,ref.

Twórcy

autor
  • Department of Plant Nutrition, Poznan University of Life Sciences, Zgorzelecka 4, 60-198 Poznan, Poland
  • Department of Agricultural Microbiology, Poznan University of Life Sciences, Szydlowska 50, 60-637 Poznan, Poland

Bibliografia

  • 1. BREŚ W. Estimation of Nutrient Losses from Open Fertigation Systems to Soil during Horticultural Plant Cultivation. Pol. J. Environ. Stud. 18, (3), 341, 2009.
  • 2. JAROSZ Z. Effect of different types of potassium fertilization on the chemical composition of leaves and fruits of greenhouse tomatoes grown in various substrates. Acta Sci. Pol., Hortorum Cultus 5, (1), 11, 2006.
  • 3. PAWLIŃSKA A., The effect of medium and nutrient solution on the chemical composition of rhizosphere, nutrient status of plants and yielding of greenhouse tomato. Akademia Rolnicza w Poznaniu, praca doktorska, pp. 128, 2003 [In Polish].
  • 4. GAJC-WOLSKA J., BUJALSKI D., CHRZANOWSKA A. Effect of a substrate on yielding and quality of greenhouse cucumber fruits. J. of Elementology 13, (2), 205, 2008.
  • 5. GRUDA N., TUCHER S., SCHNITZLER W.H. N-immobilization of wood fiber substrates in the production of tomato transplants (Lycopersicon esculentum Mill.(L.) Karst. Ex. Farw.). J. Appl. Bot., 74, 32, 2000.
  • 6. KOMOSA A., PIRÓG J., KLEIBER T. Changes of macro and micronutrients in the root environment of greenhouse tomato grown in fiber wood. Veg. Crops Res. Bull. 70, 71, 2009.
  • 7. KOMOSA A., KLEIBER T., PIRÓG J. Contents of macro- and microelements in root environment of greenhouse tomato grown in rockwool and wood fiber depending on nitrogen levels in nutrient solutions, Acta Sei. Pol., Hortorum Cultus 9, (3), 59, 2010.
  • 8. PIRÓG J., KOMOSA A. Influence of substrate and cultivar on quantity and quality of greenhouse tomato yield. Acta Agrophysica 7, (3), 699, 2006 [In Polish].
  • 9. PIRÓG J., KOMOSA A., MARKIEWICZ B, The effect of wood fiber density on the content of macro and microelements in the root environment of greenhouse cucumber. Veg. Crops Res. Bull. 70, 81, 2009.
  • 10. BREŚ W., RUPRIK B. Growing of greenhouse cherry tomato in coconut fibre with differentiated nitrogen and potassium fertilization. Part I. Yielding. Acta Agrophysica 7, (3), 527, 2006 [In Polish].
  • 11. BREŚ W., RUPRIK B. Growing of greenhouse cherry tomato in coconut fibre with differentiated nitrogen and potassium fertilization. Part II. Changes in chemical composition of nutrient solutions in root environment. Acta Agrophysica 7, (3), 539, 2006 [In Polish].
  • 12. HALLMAN E., KOBRYŃ J, Yield and quality of cherry tomato (Lycopersicon esculentum var. cerasiforme) cultivated on rockwool and cocofibre. Acta Hort. 614, 693, 2003.
  • 13. KOBRYŃ J. ABUKHOVICH A., KOWALCZYK K. Height and quality of yield of cherry tomato grown on cocofibre and rockwool. Rocz. AR Pozn. Ogrodn. 41, 523, 2007 [In Polish].
  • 14. GRUDA N. The effect of wood fiber mulch on water retention, soil temperature and growth of vegetable plants. Journal of Sustainable Agriculture, 32, (4), 629, 2008.
  • 15. GRUDAN., SCHNITZLER W.H. The influence of organic substrates on growth and physiological parameters of vegetable seedlings. Acta Hort. 450, 487,1997.
  • 16. HARDGRAVE M., HARRIMAN M. Development of organic substrates for hydroponic cucumber production. Acta Hort. 401,219, 1995.
  • 17. MARTIN J.P. Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci., 215- 230, 1950.
  • 18. ATHERTON J. G., RUDISCH J. The tomato crop. Chapman and Hall. London, New York pp. 281-334,1986.
  • 19. CHOHURA P., KOMOSA A. Nutrition status of greenhouse tomato grown in inert media. Part I. Macroelements. Acta Sci. Pol., Hortorum Cultus 2, (2), 3, 2003.
  • 20. KOWALSKA I. The influence of sulphates on the nutrient status and yielding of tomato grown in hydroponic system. Mat. Konf. “Efektywność stosowania nawozów w uprawach ogrodniczych - Zmiany ilościowe i jakościowe w warunkach stresu.” SGGW Warszawa, 20-21.06. 2000, pp. 37-39, 2000 [In Polish].
  • 21. PLANK C.O. Plant Analysis handbook for Georgia. University of Georgia, 1999.
  • 22. CAMPBEL C.R. References sufficiency ranges for plant analysis in the southern region. References sufficiency ranges vegetable crops. Southern Cooperative Series Bulletin, 394, 2000.
  • 23. Agronomic Division of the N.C. Department of Agriculture and Consumer Services Reference sufficiency ranges vegetable crops, 2000. http://ncagr.gov/agronomi/saaesd/gtom/htm/
  • 24. BREŚ W., RUPRIK B. Growing of greenhouse cherry tomato in coconut fibre with differentiated nitrogen and potassium fertilization. Part IV. Assessment of nutritional status of plants. Acta Agrophysica, 9, (2), 297, 2007 [In Polish].
  • 25. KREIJ DE C., SONNEVELD C., WARMENHOVEN M.G., STRAVER N. Guide values for nutrient element content of vegetables and flowers under glass. Voedingsoplossingen Glastuinbouw 15,1990.
  • 26. MICHAŁOJĆ Z., NOWAK L. Yielding and mineral composition of tomato grown in inert media. Mat. Konf. “Efektywność stosowania nawozów w uprawach ogrodniczych - Zmiany ilościowe i jakościowe w warunkach stresu.” SGGW pp. 70-72, Warszawa 20-21. 06. 2000 [In Polish].
  • 27. NURZYŃSKI J MICHAŁOJĆ Z. Yielding of greenhouse tomato grown in rockwool depending on potassium nutrition. Zesz. Nauk. AR Kraków 333, 235,1998 [In Polish].
  • 28. SADY W., DOMAGAŁA I., GUSTKOWICZ M. Usefulness evaluation of 5 cultivars of greenhouse tomato to cultivation in rockwool. Zesz. Nauk. AR Kraków 333, 285, 1998 [In Polish].
  • 29. BORKOWSKI J., BEREŚNIEWICZ A., STĘPOWSKI J. Effect of different fertilization on the tomato yield, quality of fruits and appearance of leaf chlorosis. Bull of Veg. Crops Res. Work. Skierniewice, XLV, 5,1996 [In Polish].
  • 30. CHOHURA P., KOMOSA A. Nutrition status of greenhouse tomato grown in inert media. Part II. Microelements. Hortorum Cultas 2, (2), 15, 2003.
  • 31. KOMOSA A., KOŁOTA E., CHOHURA P. Usefulness of iron chelates for fertilization of greenhouse tomato cultivated in rockwool. Veg. Crops Res. Bull., 55, 35, 2001.
  • 32. NZANZA B. Yield and quality of tomato as influenced by differential Ca, Mg and K nutrition. Department of Plant Production and Soil Science. Faculty of Natural and Agricultural Sciences, University of Pretoria, pp. 103, 2006.
  • 33. GŁAŻEWSKA - MANIEWSKA R, MACIEJEWSKA A, MELECH A. The presence of soil bacteria of the genus Arthrobacter in the cultivation of winter rye and their enzymatic and antagonistic properties. Acta Sci. Pol., Agricultura 3,(1), 129, 2004 [In Polish].
  • 34. SPYCHAJ-FABISIAK E., SMOLIŃSKI S. Effect of nitrogen fertilization and simulated acid rain on enzymatic activity of soils. Annales UMCS, See. E, 59, 3, 1415, 2004 [In Polish].
  • 35. KUCHARSKI J., KARUZO-WANKIEWICZ L., KUCZYŃSKA L. Effect of soil contamination Starane 250 EC on the microbiological properties. Acta Agr. Silv. ser. Agr., 42, 257, 2004 [In Polish].
  • 36. OLSZOWSKA G. The enzymatic activity of surface soil layers of the lower and upper montane Karkonoski Mountains National Park. Forest Research Papers. Leśne Prace Badawcze, 2, 95, 2007 [In Polish].
  • 37. KOPER J., PIOTROWSKA A., URBANOWSKI S. Changes of soil enzymatic activity caused by a long - term organic - mineral fertilization during plant vegetation. Zesz. Probl. Post. Nauk Rol., 465, 495, 1999.
  • 38. WYCZÓŁKOWSKI A.I., WYCZÓŁKOWSKA M., DĄBEK - SZRENIAWSKA M. Biological activity of soils under crop rotation in the selected plants. Acta Agrophysica, 8, (1), 275, 2006 [In Polish].
  • 39. BIELIŃSKA E. J., BARAN S., DOMŻAŁ H. Tlie use of indicators to assess the enzymatic effects of various agricultural practices to improve the properties of light soil. Fol. Univ. Agrie. Stetin. 211 Agrie. 84, 35, 2000 [In Polish].
  • 40. DĄBEK - SZRENIAWSKA M., KOZAK M. A., PUDŁO A.A. The number of bacteria and biochemical activity of peat and muck soils, Ann. UMCS, Ser., 59, (4), 2023, 2004 [In Polish].
  • 41. FURCZAK J., SZEMBER A., BIELIŃSKA J. The enzymatic activity of the coastal zone of lakes Piaseczno and Deep (Lake District - Włodawskie). Physiographic Studies Documentation Centre, 19, 307,1991 [In Polish].
  • 42. MARTYNIUK S., KSIĘŻNIAK A., K. JOŃCZYK, J. KUŚ Microbiological characteristics of soil under winter wheat grown in ecological and conventional system. J. Res. Apll. Agri. Eng., 52, (3), 2007 [In Polish].
  • 43. JEZIERSKA-TYS S., FRĄC M. Studies on the effects of sewage sludge of dairy on microbial activity and biochemical activity in the soil. Acta Agrophysica, Rozpr. i Monogr. (3), 6, 2008 [In Polish].
  • 44. WOCH T. Collective work. Vademecum soil classifier. Puławy, 2007 [In Polish].
  • 45. KWAŚNA H. Microbiology for agricultural education students. Wyd. AR im. Augusta Cieszkowskiego w Poznaniu, 2007 [In Polish].
  • 46. MYŚKÓW W., STACHYRA A., ZIĘBA S., MASIAK D. The biological activity of soil as an indicator of fertility. Rocz. Gleb. 47, (1/2), 89,1996 [In Polish].
  • 47. MARTYN W., SKWARYŁO B., ONUCH-AMBORSKA J., GARDIASZ Z. The number of soil microflora as an indicator of anthropogenic changes in the soil environment Roztocze National Park. Mat. Konf. “Stres w badaniach Biologicznych i Medycznych” Lublin, 1999 [In Polish].
  • 48. BRZEZIŃSKA M., WŁODARCZYK T. Changes in intracellular redox enzymes (oxidoreductases). Acta Agrophysica, Rozprawy i Monografie (3), 11, 2005 [In Polish].
  • 49. BEDNARZ-SKWARYŁO B. Estimation of biological properties of soil under cultivation of amaranth. Acta Agrophysica, 12, (2), 527, 2008 [In Polish].
  • 50. KOPER J., PIOTROWSKA A., ZIOMEK-SIWIK A. Dehydrogenase and invertase activities in a rustly soil in the neighbourhood of the Włocławek nitrogen plant “Anwil.” Proceedings of ECOpole, 2, (1), 197, 2008.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9dfdcf9c-af84-4999-ac6a-b75ec3bf4fac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.