PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 3 |

Tytuł artykułu

Astaxanthin synthesis by Xanthophyllomyces dendrorhous DSM 5626 and its astaxanthin overproducing mutants on xylose media under different illumination

Autorzy

Warianty tytułu

PL
Synteza astaksantyny przez Xanthophyllomyces dendrorhous DSM 5626 i jego nadprodukujące astaksantynę mutanty na podłożach z ksylozą, przy rożnym natężeniu oświetlenia

Języki publikacji

EN

Abstrakty

EN
Background. Astaxanthin is the most important and expensive carotenoid pigment used in aquaculture. Its commercial attractiveness is also related with its antioxidant potential. Xanthophyllomyces dendrorhous yeast is considered to be promising for commercial production of astaxanthin. The aim of this study was to investigate the possibility of the growth and astaxanthin production by X. dendrorhous strains on media containing xylose under different illumination. Material and methods. X. dendrorhous DSM 5626 and its mutants: 10BE and 26UV were used in this study. The cultures were carried out on hydrolysed rye stillage (HS) and YM medium with xylose (YM-K). Celi concentration, total carotenoid and astaxanthin yields were assessed in 5-day cultures. The effect of illumination in the range of 0-5,000 lx on growth and on astaxanthin production of yeasts in cultures run on YM-K medium was also examined. Resuits. For the tested yeast strains better growth parameters and astaxanthin yields were obtained on the YM-K medium, on which for all strains the highest pigment yields were recorded at 600-1,000 lx. The highest concentration of astaxanthin in cells was recorded for 26UV in a culture at 1,000 lx (0.51 g kg1 DCW). The volume yield of the pigment regardless of strain was highest in cultures at 600 lx. In this case 10BE was found to be the best astaxanthin producer with a yield of 2.15 mg dm'3. Conclusions. Astaxanthin synthesis in X. dendrorhous DSM 5626 and its mutants was better on YM-K medium comparing to hydrolysed rye stillage. Moreover, carotenogenesis in the studied yeast strains was subjected to marked photoregulation. Illumination within the range of 600-1,000 lx promotes carotenogenesis and astaxanthin production, while exceeding a certain light capacity resuits in microbial celi death.
PL
Wstęp. Astaksantyna jest najważniejszym i najdroższym karotenoidem stosowanym w akwakulturze. Jej komercyjna atrakcyjność wynika również z wysokiego potencjału przeciwutleniającego. Obecnie drożdże Xanthophyllomyces dendrorhous wydają się najbardziej obiecującymi mikroorganizmami w przemysłowej produkcji tego barwnika. Celem pracy było zbadanie możliwości wzrostu i produkcji astaksantyny przez szczepy X. dendrorhous w hodowlach na podłożach z ksylozą oraz zbadanie wpływu oświetlenia na karotenogenezę. Material i metody. W badaniach użyto szczep X. dendrorhous DSM 5626 oraz jego mutanty: 10BE i 26UV. Hodowle przeprowadzono na zhydrolizowanym wywarze żytnim (HS) i na podłożu YM z ksylozą (YM- K). Po pięciu dniach w hodowlach kontrolowano: wydajność biomasy oraz komórkową i objętościową wydajność karotenoidów i astaksantyny. W hodowlach na podłożu YM-K oceniano również wpływ natężenia oświetlenia w zakresie 0-5000 lx na wzrost drożdży i karotenogenezę. Wyniki. Dla badanych szczepów drożdży lepsze parametry wzrostu i wydajności astaksantyny odnotowano w hodowlach na podłożu YM-K niż na HS. W hodowlach na podłożu YM-K najlepsze wydajności astaksantyny uzyskano przy natężeniu oświetlenia 600-1000 lx. Największą komórkową koncentrację astaksantyny odnotowano dla szczepu 26UV w hodowli przy 1000 lx (0,51 g kg'1 DCW), natomiast objętościową dla 10BE, w hodowli przy 600 lx (2,15 mgdm'3). Wnioski. Badane szczepy X. dendrorhous DSM 5626 i jego mutanty rosły lepiej i syntetyzowały więcej astaksantyny na podłożu YM-K niż na zhydrolizowanym wywarze żytnim. Ponadto u badanych drożdży karotenogeneza podlegała silnej fotoregulacji. Natężenie oświetlenia w zakresie 600-1000 lx sprzyjało syntezie karotenoidów, w tym astaksantyny.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

3

Opis fizyczny

p.279-288,ref.

Twórcy

  • Institute of Technology Plant Origin Food, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland

Bibliografia

  • An G.H., Johnson E.A., 1990. Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma. Antonie van Leeuwenhoek J. Microbiol. 57, 191-203.
  • Ananda N., Vadlani P.V., 2010. Production and optimization of carotenoid-enriched dried distiller’s grains with solubles by Phaffia rhodozyma and Sporobolomyces roseus fermentation of whole stillage. J. Ind. Microbiol. Biotechnol. 37, 1183-1192.
  • Bhosale P., 2004. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol. 63, 351-361.
  • Bon J.A., Leathers T.D., Jayaswal R.K., 1997. Isolation of astaxanthin-overproducing mutants of Phaffia rhodozyma. Biotechnol. Lett. 19, 109-112.
  • Breithaupt D.E., 2007. Modem application of xanthophylls in animal feeding - a review. Trends Food Sci. Technol. 18, 501-506.
  • Cruz J.M., Parajó J.C., 1998. Improved astaxanthin production by Xanthophyllomyces dendrorhous growing on enzymatic wood hydrolysates containing glucose and cellobiose. Food Chem. 63 (4), 479-484.
  • De la Fuente J.L., Rodriguez-Sáiz M., Schleissner C., Diez B., Peiro E., Barredo J.L., 2010. High-titer production of astaxanthin by the semi-industrial fermentation of Xanlhophyllomyces dendrorhous. J. Biotechnol. 148, 144-146.
  • Flores-Cotera L.B., Martin R., Sánchez S., 2001. Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phos- phate and citrate in chemically defined medium. Appl. Microbiol. Biotechnol. 55, 341-347.
  • Goswami G., Chaudhuri S., Dutta D., 2010. The present perspective of astaxanthin with reference to biosynthesis and pharmacological importance. World J. Microbiol. Biotechnol. 26,1925-1939.
  • Gramza-Michałowska A., Stachowiak B., 2010. The antioxidant potential of carotenoid extract from Phaffia rhodozyma. Acta Sci. Pol., Technol. Aliment. 9 (2), 171-188.
  • Handbook of photometrical operation analysis. 2000. Dr. Lange, BDB 079 [in German].
  • Hu Z.C., Zheng Y.G., Wang Z., Shen Y.C, 2005. Effect of sugar-feeding strategies on astaxanthin production by Xanthophyllomyces dendrorhous. World J. Microbiol. Biotechnol. 21, 771-775.
  • Karppi J., Rissanen T.H., Nyyssönen K., Kaikkonen J., Ols- son A.G., Voutilainen S., Salonen J.T., 2007. Effects of astaxanthin supplementation on lipid peroxidation. Int. J. Vitam. Nutr. Res. 77, 3-11.
  • Krzywonos M., Cibis E., Miśkiewicz T., Ryznar-Luty A., 2009. Utilization and biodegradation of starch stillage (distillery wastewater). Electr. J. Biotechnol. 12 (1), 1-12.
  • Leathers T.D., 2003. Bioconversions of maize resiudes to value-added coproducts using yeast-like fungi. FEMS Yeast Res. 3, 133-140.
  • Liu X.B., Osawa T., 2007. Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem. Bio- phys. Res. Commun. 357, 187-193.
  • McNulty H.P., Byun J., Lockwood S.F., Jacob R.F., Mason R.P., 2007. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim. Biophys. Acta 1768 (1), 167-174.
  • Montanti J.M., Nghiem N.P., Johnston D., 2011. Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma. Appl. Biochem. Biotechnol. 164, 655-665.
  • Palágyi Z.S., Ferenczy L., Vágvölgyi C.S., 2001. Carbonsource assimilation pattem of astaxanthin-producing yeast Phaffia rhodozyma. World J. Microbiol. Biotechnol. 17, 95-97.
  • Parajó J.C., Santos V., Vázquez M., Cruz J.M., 1997. Production of carotenoids by Xanthophyllomyces dendrorhous growing on enzymatic hydrolysates of prehy- drolysed wood. Food Chem. 60 (3), 347-355.
  • Parajó J.C., Santos V., Vázquez M., 1998. Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose. Process Biochem. 33 (2), 181-187.
  • Pashkow F.J., Watumull D.G., Campbell C.L., 2008. Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am. J. Car- diol. 101 (10A), 58D-68D.
  • Reynders M.B., Rawling D.E., Harrisem S.T.I., 1997. Demonstration of the Crabtree effect in Phaffia rhodozyma during continuous and fed-batch cultivation. Biotech- nol. Lett. 19, 549-552.
  • Rodrigues E., Mariutti L.R., Mercadante A.Z., 2012. Scavenging capacity of marine carotenoids against reactive oxygen and nitrogen species in a membrane-mimicking system. Mar. Drugs 10 (8), 1784-1798.
  • Schmidt I., Schewe H., Gassel S., Jin C., Buckingham J., Hiimbelin M., Sandmann G., Schrader J., 2011. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl. Microbiol. Biotechnol. 89, 555-571.
  • Stachowiak B., 2012. Astaxanthin synthesis by yeast Xanthophyllomyces dendrorhous and its mutants on media based on plant extracts. Indian J. Microbiol. 52 (4), 654-659.
  • Stachowiak B., 2013 a. Efficiency of selected mutagens in generating Xanthophyllomyces dendrorhous strains hyperproducing astaxanthin. Polish J. Microbiol. 62 (1), 67-72.
  • Stachowiak B., 2013 b. The effect of illumination intensi- ties on astaxanthin synthesis by XanthophyIlomyces dendrorhous and its mutants. Food Sci. Biotechnol. 22 (4), 1-6.
  • Szwengiel A., Czarnecka M., Czarnecki Z., 2007. Levan synthesis during associated action of levansucrase and Candida cacaoi DSM 2226 yeast. Polish J. Food Nutr. Sci. 57 (4), 433-440.
  • Takahashi K., Watanabe M., Takimoto T., Akiba Y., 2004. Uptake and distribution of astaxanthin in several tissues and plasma lipoproteins in małe broiler chickens fed a yeast (Phaffia rhodozyma) with a high concentration of astaxanthin. Brit. Poultry Sci. 45 (1), 133-138.
  • Tropea A., Gervasi T., Melito M.R., Curto A.L., Curto R.L., 2013. Does the light influence astaxanthin production in Xanthophyllomyces dendrorhous? Nat. Prod. Res. 27 (7), 648-654.
  • Vazquez M., 2001. Effect of the light on carotenoid profiles of Xanthophyllomyces dendrorhous strains (formerly Phaffia rhodozyma). Food Technol. Biotechnol. 39 (2), 123-128.
  • Vazquez M., Santos V., Paraja J.C., 1997. Effect of the carbon source on carotenoid profiles of Phaffia rhodozyma strains. J. Indust. Microbiol. Biotechnol. 19, 263-268.
  • Vustin M.M., Belykh E.N., Kishilova S.A., 2004. Relationnship between astaxanthin production and the intensity of anabolic process in the yeast Phaffia rhodozyma. Microbiology 73 (6), 751-757.
  • Xu X., Jin Z., Wang H., Chen X., Wang C., Yu S., 2006. Effect of astaxanthin from Xanthophyllomyces denrorhous on the pigmentation of goldfish, Carassiuus auratus. J. World Aquacult. Soc. 37 (3), 282-288.
  • Yuan J.P., Peng J., Yin K., Wang J.H., 2011. Potential healthpromoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Mol. Nutr. Food Res. 55, 150-165.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9de06a6a-b622-4451-810c-7aca3380cb20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.