PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |

Tytuł artykułu

Fate of copper in soils from different fertilizer doses in relation to environmental risk assessment

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Total copper distribution in the soil profile was determined, depending on the type of soil and Cu dose, 5 years after the application of this element. Soil samples were taken from 5 layers to 50 cm depth from microplots filled with 3 types of soil that 5 years earlier had been treated with 5 doses of Cu: 4, 8, 12, and 16 kg ha⁻¹. There was an uneven distribution of Cu in the soil profile. In general the Cu decreased in the subsurface layers (10-30 cm) and increased in deeper layers (30-50 cm) in relation to the surface layer (0-10 cm). Using PCA analysis, both soils and doses of similar Cu distribution in the soil profile were pointed out. The distribution pattern in the sandy soil differed from the other two sandy loam soils. Additionally, for 4 and 8 kg ha⁻¹ doses, we recorded a similar Cu distribution as for the soil with natural Cu concentration. On the other hand, in the case of the doses of 12 and 16 kg ha⁻¹, there was a distinctly different pattern of distribution. The maximum dose of Cu, which can be applied every 5 years, is 8 kg ha⁻¹ for the sandy soil with a low content of organic matter and 12 kg ha⁻¹ for sandy loam.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.1735-1741,fig.,ref.

Twórcy

  • Institute of Soil Science and Plant Cultivation, State Research Institute, Department of Weed Science and Soil Tillage Systems in Wroclaw, Wroclaw, Poland
  • Institute of Soil Science and Plant Cultivation, State Research Institute, Department of Weed Science and Soil Tillage Systems in Wroclaw, Wroclaw, Poland

Bibliografia

  • 1. KARAMANOS R.E., GOH T.B. Effect of rate of Cu application on yield of hard red spring wheat. Comm. Soil Sci. Plant Anal. 35 (13-14), 2037, 2004.
  • 2. KORZENIOWSKA J. Comparison of different winter wheat cultivars with respect to their Cu fertilization demand. Zeszyty Problemowe Postępów Nauk Rolniczych 541, 255, 2009.
  • 3. KORZENIOWSKA J., STANISLAWSKA-GLUBIAK E., KANTEK K., LIPINSKI W., GAJ R. Micronutrient status of winter wheat in Poland. Journal of Central European Agriculture 16 (1), 54, 2015.
  • 4. STANISLAWSKA-GLUBIAK E., KORZENIOWSKA J. Rules of fertilizing crops with micronutrients [Zasady nawożenia mikroelementami roślin uprawnych]. Studia i Raporty IUNG-PIB, 8, 99, 2007 [Iin Polish].
  • 5. PIETRZAK U, MCPHAIL D.C. Cu accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma. 122, 151, 2004.
  • 6. BESNARD E., CHENU C., ROBERT M. Influence of organic amendments on Cu distribution among particlesize and density fractions in Champagne vineyard soils. Environ. Pollut. 112, 329, 2001.
  • 7. SENKONDO Y.H., SEMU E., TACK F.M.G. Vertical Distribution of Cu in Cu-Contaminated Coffee Fields in Kilimanjaro, Tanzania. Commun. Soil Sci. Plant Anal. 46, 1187, 2015.
  • 8. LI W., ZHANG M., SHU H. Distribution and Fractionation of Cu in Soils of Apple Orchards. Environ. Sci. Pollut. Res. 12 (3), 168, 2005.
  • 9. XIAORONG W., MINGDE H., MINGAN S. Cu fertilizer effects on Cu distribution and vertical transport in soils. Geoderma. 138, 213, 2007.
  • 10. CUSKE M., KARCZEWSKA A., GAŁKA B., DRADACH A. Some adverse effects of soil amendment with organic Materials - The case of soils polluted by Cu industry phytostabilized with red fescue. Int. J. Phytoremediation. 18 (8), 839, 2016.
  • 11. KABATA-PENDIAS A., MUKHERJEE A.B. Trace elements from soil to human. Springer-Verlag Berlin Heidelberg, 2007.
  • 12. MCLAREN R.G., CLUCAS L.M., TAYLOR M.D., HENDRY T. Leaching of macronutrients and metals from undisturbed soils treated with metalspiked sewage sludge 2. Leaching of metals. Austr. J. Soil Res. 42, 459, 2004.
  • 13. CUSKE M., KARCZEWSKA A., GAŁKA B. Speciation of Cu, Zn, and Pb in soil solutions extracted from strongly polluted soils treated with organic materials. Pol. J. Environ. Stud. 26 (2), 567, 2017.
  • 14. KARCZEWSKA A. Soil protection and recultivation of degraded land [Ochrona gleb i rekultywacja trenów zdegradowanych]. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, 2012 [In Polish].
  • 15. KORZENIOWSKA J., STANISŁAWSKA-GLUBIAK E. A comparison of the suitability of several methods to estimate the bioavailability of elements in soils to plants. Fresen. Environ. Bull. 22 (4), 943, 2013.
  • 16. KORZENIOWSKA J., STANISŁAWSKA-GLUBIAK E. Comparison of 1 M HCl and Mehlich 3 for Assessment of the Micronutrient Status of Polish Soils in the Context of Winter Wheat Nutritional Demands. Commun Soil Sci Plant Anal, 46, 1263, 2015.
  • 17. KORZENIOWSKA J., STANISLAWSKA-GLUBIAK E. Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil. Environ. Sci. Pollut. Res. 24 (17), 14857, 2017.
  • 18. Dutch Ministry of Infrastructure and the Environment. Soil Remediation Circular 2013, version of 1 July 2013. http://rwsenvironment.eu/subjects/soil/legislation-and/soilremediation
  • 19. Regulation of the Minister of the Environment of 1 September 2016 on the conduct of the assessment of contamination of the surface of the earth (Journal of Laws, item 1395)
  • 20. BEHBAHANINIA A., MIRBAGHERI S.A., NOURI J. Effects of sludge from wastewater treatment plants on heavy metals transport to soils and groundwater. Iranian J. Environ. Health Sci. Eng. 7 (5), 401, 2010.
  • 21. RICHARDS B.K, STEENHUIS T.S., PEVERLY J.H., MCBRIDE M.B. Effect of sludge-processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading. Environ. Pollut. 109, 327, 2000.
  • 22. YEGANEH M., AFYUNI M., KHOSHGOFTARMANESH A.H., REZAEINEJAD Y., SCHULIN R. Transport of zinc, Cu, and lead in a sewage sludge amended calcareous soil. Soil Use Manage. 26, 176, 2010
  • 23. GEORGIEV P., GROUDEV S., SPASOVA I., NICOLOVA M. Transport of radionuclides and heavy metals during the cleanup of a polluted cinnamonic soil. J. Geochem. Explor. 174, 148, 2017.
  • 24. KABALA C., SINGH B.R. Fractionation and mobility of Cu, lead, and zinc in soil profiles in the vicinity of a Cu smelter. J. Environ. Qual. 30, 485, 2001.
  • 25. LI F., FAN Z., XIAO P., OH K., MA X., HOU W. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environ Geol 57, 1815, 2009.
  • 26. KABAŁA C. (ed.). 2015. Soils of Lower Silesia: origins, diversity and protection. PTG, PTSH. Wrocław, 2015.
  • 27. KABATA-PENDIAS A., MOTOWICKA-TERELAK T., PIOTROWSKA M., TERELAK H., WITEK T. Assessment of contamination level of soil and plants with heavy metals and sulphur. Guidelines for Agriculture, IUNG Pulawy Publisher, P(53), 1, 1993 [In Polish].
  • 28. FUJIKAWA Y., FUKUI M., KUDO A. Vertical distributions of trace metals in natural soil horizons from Japan. Part 1. Effect of soil types. Water Air Soil Poll. 124, 1, 2000.
  • 29. ANTONKIEWICZ J., PELKA R. fractions of heavy metals in soil after the application of municipal sewage sludge, peat, and furnace ash. Soil Sci. Ann. 65 (3), 118, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9dd10b29-49b6-4511-bab9-85c8318daec2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.