PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 75 |

Tytuł artykułu

Possibility of identification of negative extreme climatic events using Pinus sylvestris tree-rings in Transdanubia, Hungary

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Negative climatic extremes occur more frequently in the last decades. Since the Carpathian Basin is highly concerned in their impacts it is important to investigate prior events and estimate the response of the environment to them to get useful information for the future. In our work we selected a stand which is seriously affected by unfavorable summer conditions to examine what kind of fingerprint the negative extreme events have left. We investigated narrow rings and intra-annual density fluctuation to describe years with extreme events. Their stabilized frequency was tested against climatic and groundwater data, as well as against aridity index to determine climate-growth relationships using Pearson and Spearman’s correlations. Our results show positive significant correspondence between summer precipitation and treering growth together with negative connection with summer temperature. The Spearman’s correlation between stabilized frequency of intra-annual density fluctuations, narrow rings and climate data ended with significant relationship in summer. According to the comparison of intra-annual density fluctuation and narrow ring data with drought periods it can be said that narrow rings are better tool for the examination of negative extreme events in summer.

Wydawca

-

Czasopismo

Rocznik

Tom

75

Opis fizyczny

p.45-54,fig.,ref.

Twórcy

autor
  • Department of Geology and Paleontology, Faculty of Science and Informatics, University of Szeged, Egyetem utca 2-6, H-6722, Hungary
autor
  • Department of Geology and Paleontology, Faculty of Science and Informatics, University of Szeged, Egyetem utca 2-6, H-6722, Hungary

Bibliografia

  • Argyrous G (2005) Statistics for Research with a guide to SPSS. Sage Publications.
  • Babos K (1984) A csertölgy és néhány más fafaj évgyűrűszélesség és az éves csapadék összefüggés-vizsgálata. Botanikai Közlemények 71: 123–132.
  • Bogino S & Bravo F (2009) Climate and intraannual density fluctuations in Pinus pinaster subsp. mesogeensis in Spanish woodlands. Canadian Journal of Forest Research 39: 1557–1565.
  • Borhidi A (2003) Magyarország növénytársulásai. Akadémiai Kiadó, Budapest.
  • Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlén W, Schweingruber FH & Zetterberg P (1990) A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature 346: 434–439.
  • Büntgen U, Esper J, Frank DC, Nicolussi K & Schmidhalter M (2006) A 1052-year tree-ring proxy for Alpine summer temperatures. Climate Dynamics 25: 141–153.
  • Büntgen U, Frank DC, Nievergelt D & Esper J (2006) Summer temperature variations in the European Alps, A.D. 755–2004. Journal of Climate 19: 5606–5623.
  • Campelo F, Nabais C, Freitas H & Gutiérrez E (2007) Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Annals of Forest Science 64: 229–238.
  • Campelo F, Vieira J & Nabais C (2013) Tree-ring growth and intra-annual density fluctuations of Pinus pinaster responses to climate: does size matter? Trees 27: 763–772.
  • Cook ER & Krusic PJ (2006) ARSTAN4.1b_XP. http://www.ldeo.columbia.edu.
  • Cook ER & Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41: 45–53.
  • Cook ER (1985) A Time Series Analysis Approach to Tree-ring Standardization. Ph.D. dissertation, The University of Arizona, Tucson.
  • Cufar K, Cherubini M, Gricar J, Prislan P, Spina S & Romagnoli M (2011) Xylem and phloem formation in chestnut (Castanea sativa Mill.) during the 2008 growing season. Dendrochronologia 29: 127–134.
  • de Luis M, Novak K, Raventós J, Gričar J, Prislan P & Čufar K (2011) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29: 163–169.
  • De Micco V, Battipaglia G, Cherubini P & Aronne G (2014) Comparing methods to analyse anatomical features of tree rings with and without intra-annual density fluctuations (IADFs). Dendrochronologia 32: 1–6.
  • Douglass AE (1914) A method of estimating rainfall by the growth of trees. Bulletin of the American Geographical Society 46: 321–335.
  • Douglass AE (1920) Evidence of climatic effects in the annual rings of trees. Ecology 1: 24–32.
  • Fritts HC (1965) Tree-ring evidence for climatic changes in western North America. Monthly Weather Review 93: 421–443.
  • Fritts HC (1976) Tree rings and climate. The Blackburn Press, New Jersey.
  • Garamszegi B & Kern Z (2014) Climate influence on radial growth of Fagus sylvatica growing near the edge of its distribution in Bükk Mts., Hungary. Dendrobiology 72: 89–97.
  • Gulyás K, Bidló A & Horváth A (2014) Causes of the Forest Die-off in a Pinus Forest (Pinus sylvestris) in Fenyőfő: Local and regional challenges of climate change adaptation and green technologies. Proceedings. (ed. by A Polgár, T Bazsó, G Nagy & B Gálos) Sopron, Hungary, pp. 60–67.
  • Hantemirov RM, Gorlanova LA & Shiyatov SG (2004) Extreme temperature events in summer in northwest Siberia since AD 742 inferred from tree rings. Palaeogeography, Palaeoclimatology, Palaeoecology 209: 155–164.
  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.
  • Ježík M, Blaženec M, Střelcová K & Ditmarová L (2011) The impact of the 2003–2008 weather variability on intra-annual stem diameter changes of beech trees at a submontane site in central Slovakia. Dendrochronologia 29: 227–235.
  • Jones PD & Harris I (2013) CRU TS3.21: Climatic Research Unit (CRU) Time-Series (TS) Version 3.21 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901 – Dec. 2012), University of East Anglia Climatic Research Unit (CRU)
  • Kern Z, Grynaeus A & Morgós A (2009) Reconstructed precipitation for Southern Bakony Mountains (Transdanubia, Hungary) back to AD 1746 based on ring widths of oak trees. Időjárás 113: 299–314.
  • Kern Z, Patkó M, Kázmér M, Fekete J, Kele S & Pályi Z (2013) Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quaternary International 239: 257–267.
  • Kevey B (2008) Magyarország erdőtársulásai. Tilia 14: 3–489.
  • Koprowski M (2012) Long-term increase of March temperature has no negative impact on tree rings of European larch (Larix decidua) in lowland Poland. Trees 26: 1895–1903.
  • Kósa E (1963) Az erdeifenyő jelentősége és egészségi állapota a Bakonyszentlászló környéki erdőben. Diplomadolgozat. Nyugat-magyarországi Egyetem, Sopron.
  • Levanič T, Poljanšek S & Toromani E (2015) Early summer temperatures reconstructed from black pine (Pinus nigra Arnold) tree-ring widths from Albania. The Holocene 25: 469–481.
  • Liang E & Eckstein D (2006) Light rings in Chinese pine (Pinus tabulaeformis) in semiarid areas of north China and their palaeo-climatological potential. New Phytologist 171: 783–791.
  • Lough JM & Fritts HC (1985) The Southern Oscillation and tree rings: 1600–1961. Journal of Climate and Applied Meteorology 24: 952–966.
  • Majer A (1988) Fenyves a Bakonyalján. Akadémiai Kiadó, Budapest.
  • Mérian P, Pierrat J-C & Lebourgeois F (2013) Effect of sampling effort on the regional chronology statistics and climate-growth relationships estimation. Dendrochronologia 31: 58–67.
  • Michelot A, Bréda N, Damesin C & Dufrene E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest Ecology and Management 265: 161–171.
  • Nabais C, Campelo F, Vieira J & Cherubini P (2014) Climatic signals of tree-ring width and intra-annual density fluctuations in Pinus pinaster and Pinus pinea along a latitudinal gradient in Portugal. Forestry 87: 598–605.
  • Olivar J, Bogino S, Spiecker H & Bravo F (2012) Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendrochronologia 30: 35–47.
  • Opala M (2015) The 443-year tree-ring chronology for the Scots pine from Upper Silesia (Poland) as a dating tool and climate proxy. Geochronometria 42: 41–52.
  • Osborn T, Briffa K & Jones PD (1997) Adjusting variance for sample-size in tree-ring chronologies and other regional-mean timeseries. Dendrochronologia 15: 1–10
  • Pálfai I (2011) Aszályos évek az alföldön 1931–2010 között: Környezeti változások és az Alföldön. (ed. By J Rakonczai) Nagyalföld Alapítvány Kötetei 7. Békéscsaba, pp. 87–97.
  • Panayotov M (2007) Influence of ecological factors on the growth of the tree species from Pinaceae family at the Bulgarian treeline. PhD thesis, University of Forestry, Sofia.
  • Panayotov M, Zafirov N & Cherubini P (2013) Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria. Trees 27: 211–227
  • Papp L (1966) Időjárási kártételek a fenyvesekben: A fenyők termesztése. (ed. By B Keresztesi). Akadémiai Kiadó, pp. 428–441.
  • Rigling A, Waldner PO, Forster T, Bräker OU & Pouttu A (2001) Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Canadian Journal of Forest Research 31: 18–31.
  • Rinn F (2003) TSAP-Win Time Series Analysis and Presentation for Dendrochronology and Related Applications. User Reference, Heidelberg.
  • Rybníček M, Čermák P, Žid T, Kolář, T, Trnka M & Büntgen U (2015) Exploring growth variability and crown vitality of Sessile oak (Quercus petraea) in the Czech Republic. Geochronometria 42: 17–27.
  • Schweingruber FH (1996) Tree rings and environment. Dendroecology. Paul Haupt Verlag, Berne.
  • Soó R (1931) Adatok a Balatonvidék vegetációjának ismeretéhez III. Magyar Biolológia Kutató Intézet Munkái 4: 293–319.
  • Sümegi P, Náfrádi K & Törőcsik T (2011) Holocene vegetation history in the Alpine Foreland at Szombathely-Zanat, western Hungary: Workshop on landscape history (ed. by P Balázs & E Konkoly-Gyuró) University of West Hungary, Sopron, pp. 161–176.
  • Szabados I (2006) The effect of the precipitation on tree ring width. Carpathian Journal of Earth and Environmental Sciences 1: 39–44.
  • Toromani E, Pasho E, Alla QA, Mine V & Çollaku N (2015) Radial growth responses of Pinus halepensis Mill. and Pinus pinea L. forests to climate variability in western Albania. Geochronometria 42: 91–99.
  • Vaganov EA, Hughes MK & Shashkin AV (2006) Growth dynamics of conifer tree rings. Images of the past and future environments. Springer Science & Business Media.
  • van der Werf GW, Sass-Klaassen UGW & Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25: 103–112.
  • Wigley TML, Briffa KR & Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201–213.
  • Wilson RJS, Luckman BH & Esper J (2005) A 500 year dendroclimatic reconstruction of spring–summer precipitation from the lower Bavarian forest region, Germany. International Journal of Climatology 25: 611–630.
  • Woodhouse CA (1993) Tree-growth response to ENSO events in the central Colorado Front Range. Physical Geography 14: 417–435.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9dba932d-b6ef-431f-a22a-0ad7ab34609f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.