PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 72 | 4 |

Tytuł artykułu

Treatment with small molecules in an important milestone towards the induction of pluripotency in neural stem cells derived from human cord blood

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Standardization of methods for obtaining iPS cells from the human somatic cells and then their successful differentiation are important in the context of their possible application in personalized cell therapy and the development of toxicological and pharmacological tests. In the present study, the influence of the small molecules representing epigenetic modulators (histone deacetylase inhibitor Trichostatin A and DNA methyltransferase inhibitor RG-108) on the process of reverting neural progenitors from HUCB-NSC (Human Umbilical Cord Blood Neural Stem Cell) line to the pluripotent state was tested. The experiments were conducted in low oxygen tension, in three different experimental layouts: (1) in the presence of reprogramming/recombinant polyarginine-tailed proteins; (2) with recombinant proteins and small molecules; (3) only in the presence of small molecules. We wanted to find out, whether it will be possible to induce pluripotent state of neural stem cells only by epigenetic modulators. Our results revealed that the inhibitors of DNA methylation and histone deacetylation used along with 5% oxygen tension can only transiently induce or elevate some pluripotency genes in neural progenitors with different pattern, but were not sufficient for stable reprogramming. The iPS cells from neural progenitor cells of HUCB- NSC were obtained only when TSA, RG-108 and reprogramming proteins have been applied simultaneously. These cells were tested for the expression of the selected pluripotency genes and in functional assays to prove their pluripotency stage. The obtained data show that the small molecules in conjunction with reprogramming factors are the potent tools in cell reprogramming.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

72

Numer

4

Opis fizyczny

p.337-350,fig.,ref.

Twórcy

Bibliografia

  • Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE (2011) Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency. Cell Stem Cell 8: 376-388.
  • Braun H, Günther-Kern A, Reymann K, Onteniente B (2012) Neuronal differentiation of human iPS-cells in a rat cortical primary culture. Acta Neurobiol Exp (Wars) 72: 219-229.
  • Broxmeyer HE (2010) Will iPS cells enhance therapeutic applicability of cord blood cells and banking? Cell Stem Cell 6: 21-24.
  • Buzanska L, Machaj EK, Zabłocka B, Pojda Z, Domańska- Janik K (2002) Human cord blood derived cells attain neuronal and glial features in vitro. J Cell Sci 115: 2131¬2138.
  • Buzanska L, Jurga M, Stachowiak EK, Stachowiak MK, Domanska-Janik K (2006) Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev 15: 391-406.
  • Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J, Cheng L (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expres¬sion signatures. Cell Res 21: 518-529.
  • Domanska-Janik K, Habich A. (2011) Aggregation-promoted expansion of neuraly committed human umbilical cord blood progenitors in vitro. Acta Neurobiol Exp (Wars) 71: 1-11
  • Feng B, Ng JH, Heng JC, Ng HH (2009) Molecules that pro¬mote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4(4):301-312.
  • Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD (2010) Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139: 85-97.
  • Giorgetti A, Montserrat N, Rodriguez-Piza I, Azqueta C, Veiga A, Izpisua Belmonte JC (2010) Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nat Protoc 5: 811-820.
  • Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, Maier LS, Han DW, Glage S, Miller K, Fischer P, Schöler HR, Martin U (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5: 434-441.
  • Habich A, Jurga M, Markiewicz I, Lukomska B, Bany- Laszewicz U, Domanska-Janik K (2006) Early appear¬ance of stem/progenitor cells with neural-like characteris¬tics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34: 914-925.
  • Ho L, Crabtree GR (2010) Chromatin remodeling during development. Nature 463: 474-484.
  • Hu K, Yu J, Suknuntha K, Tian S, Montgomery K, Choi KD, Stewart R, Thomson JA, Slukvin II (2011) Efficient gen¬eration of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 117: 109-119.
  • Jablonska A, Kozlowska H, Markiewicz I, Domanska-Janik K, Lukomska B (2010) Transplantation of neural stem cells derived from human cord blood to the brain of adult and neonatal rats. Acta Neurobiol Exp (Wars) 70: 337¬350.
  • Jurga M, Lipkowski AW, Lukomska B, Buzanska L, Kurzepa K, Sobanski T, Habich A, Coecke S, Gajkowska B, Domanska-Janik K (2009) Generation of functional neu¬ral artificial tissue from human umbilical cord-blood stem cells. Tissue Eng Part C Methods 15: 365-372.
  • Kang H, Roh S (2011) Extended exposure to trichostatin A after activation alters the expression of genes important for early development in nuclear transfer murine embry¬os. J Vet Med Sci 73: 623-631.
  • Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Schöler HR (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461: 649¬653.
  • Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2007)Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21: 297-303.
  • Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A, Ding S (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6: 805-808.
  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibro¬blasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1: 55-70.
  • Maherali N, Hochedlinger K (2008) Guidelines and tech¬niques for the generation of induced pluripotent stem cells. Cell Stem Cell 3: 595-605.
  • Marion RM, Blasco MA (2010) Telomeres and telomerase in adult stem cells and pluripotent embryonic stem cells. Adv Exp Med Biol 695: 118-131.
  • Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA (2009) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4: 141-154.
  • McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R, Tilton R, Denner L (2005) Production of stem cells with embryonic characteristics from human umbili¬cal cord blood. Cell Prolif 38: 245-255.
  • Park DH, Eve DJ, Chung YG, Sanberg PR (2010) Regenerative medicine for neurological disorders. Scientific World Journal 10: 470-489.
  • Ruau D, Ensenat-Waser R, Dinger TC, Vallabhapurapu DS, Rolletschek A, Hacker C, Hieronymus T, Wobus AM, Müller AM, Zenke M (2008) Pluripotency associated genes are reactivated by chromatin-modifying agents in neurosphere cells. Stem Cells 26: 920-926.
  • Rungarunlert S, Techakumphu M, Pirity MK, Dinnyes A (2009) Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactors. World J Stem Cells 1: 11-21.
  • Sanberg PR, Willing AE, Garbuzova-Davis S, Saporta S, Liu G, Sanberg CD, Bickford PC, Klasko SK, El-Badri NS (2005) Umbilical cord blood-derived stem cells and brain repair. Ann N Y Acad Sci 1049: 67-83.
  • Saretzki G (2011) The hormonal regulation of pluripotency and embryogenesis. In: Embryonic Stem Cells (Atwood C, Ed). InTech, p. 337-360. [doi: 10.5772/589]
  • Shaffer LG (2009) An International System for Human Cytogenetic Nomenclature (ISCN) S. Karger Publishing.
  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322: 945-949.
  • Sypecka J, Dragun-Szymczak P, Zalewska T, Domańska- Janik K (2009) Laminin promotes oligogliogenesis and increases MMPs activity in human neural stem cells of HUCB-NSC line. Acta Neurobiol Exp (Wars) 69: 37-45.
  • Szablowska-Gadomska I, Zayat V, Buzanska L (2011) Influence of low oxygen tensions on expression of pluripotency genes in stem cells. Acta Neurobiol Exp (Wars) 71: 86-93.
  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined fac¬tors. Cell 131: 861-872.
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 282: 1145-1147.
  • Tóth KF, Knoch TA, Wachsmuth M, Frank-Stöhr M, Stöhr M, Bacher CP, Müller G, Rippe K (2004) Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin. J Cell Sci 117: 4277-4287.
  • Wong CJ, Casper RF, Rogers IM (2010) Epigenetic changes to human umbilical cord blood cells cultured with three proteins indicate partial reprogramming to a pluripotent state. Exp Cell Res 316: 927-939.
  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1: 39-49.
  • Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluri¬potent stem cells. Cell Stem Cell 5: 237-241.
  • Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y (2011) Efficient feeder-free episomal reprogramming with small molecules. PLoS One 6: e17557.
  • Zaehres H, Kögler G, Arauzo-Bravo MJ, Bleidissel M, Santourlidis S, Weinhold S, Greber B, Kim JB, Buchheiser A, Liedtke S, Eilken HM, Graffmann N, Zhao X, Meyer J, Reinhardt P, Burr B, Waclawczyk S, Ortmeier C, Uhrberg M, Schöler HR, Cantz T, Wernet P (2010) Induction of pluripotency in human cord blood unre¬stricted somatic stem cells. Exp Hematol 38: 809-818.
  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4: 381-384.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9c93ecfc-82d5-4656-99e5-229ac2dd184e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.