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Summary

An interval estimation for the correlation coeféini in bivariate normal distribution is con-
sidered. A case of a very small sample $izB is taken into account. The coverage probability
and an average length for two confidence interaadsevaluated by means of a simulation study.
One confidence interval is based on Fisher's zsframation and the another on probability
density function.
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1. Introduction

Let us consider the samp(é’(i VY, ),i =1...n from bivariate normal dis-
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correlation  coefficient p is the sample correlation coefficient
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An inference aboup has been investigated by many authors. The firstveas
Fisher (1915, 1921). He derived the probabilitysignfunction (pdf) forr and
pointed the famous transformation, called Fisher'stransformation,

+
= %Iogl—r which is extremely useful to obtain confidenceemugls for p

r =

1-r
as z has got approximately normal distribution  with egfed value
_ 1, 1+p . 1
¢ =—log=——— and variance—— .
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Fisher (1915) gave the formula for the probabitignsity function of in two
forms, one in terms of infinite sums and the ofimeterms of (-2)-th deriva-
tives. Hotelling (1953) derived the probabilityndé&y function ofr in the fol-
lowing form:

3 N=2 T(n=1) ( S\osi)f,  o\ostma)fy  yisn (1 1.1 1+pr) 11
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where G(a,b;c, x) = 2 r(;i(;)j) r(:(:))J) r(l;(i)J)XJ_: '

Though the problem of confidence intervals f@ is very old and has been

intensively investigated, it still attracts atientof statisticians. Sun and Wong
(2007) did some simulations to compare the covepagbability (i.e. the per-
centage of a true parameter value falling withm ititervals) for nine 95% con-
fidence intervals obtained from different transfatimns . Among others they
considered Fisher’stransformation and four others, more accurateergby
Hotelling (1953). They also considered the c.sdzhon the pdf of form (1.1).
Their simulation study for sample size=10 showed the similar coverage
probability for all considered intervals. Actuathyeir paper motivated this one.
The aim of the paper is to give some results fosraall sample size as=5.
The intervals based on Fisherstransformation and on probability density
function (1.1) are considered. Obtained resultseamnot only coverage prob-
ability but also the length of intervals.
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The (1—0()100)/0 confidence interval based on Fisherdransformation is
derived from formula:

uC(
tanh z- . tanh z+
n-3

(1.2)

=

where u, is (1—%) -th percentile of standard normal distribution and
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The endsp, and p, of confidence interval based on pdf (1.1) carcaleu-
lated (see for example Cramer (1958)) as soluwdmstegral equations:

To

[ f(rip,)dr =% and J-lf(r;pz)dr :1—% , (1.3)
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wherer, is the observed sample correlation coefficient.

2. Results

10 000 random samples, each of size 5, from bitearigormal distribution

0|1
NHO}L ED with p=-09 , -0.5, 0, 0.5 and 0.9 were generated. The
coverage probability and average length of 95% ) %hd 99% confidence
intervals (1.2) and (1.3) were calculated. In cafs€l.3) four terms in the se-

: 11 1 1+pr ,

ries G EE n—E, 2 were taken. It gives very accurate results for pdf
as Hotelling (1953) proved that the series fi(r;p) converges very rapidly
and that the first term alone is often a sufficiepproximation. Additionally, as
sample sizen=5 is very small, it was checked that for four terms
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1

.[ f(r;p) = 0.9995 for all consideredp . Thus approximation with four terms
-1

turned out to be very accurate. All calculationgeveade by using an own
programme in the Maple application. Solutions @f.3) were found by the
bisection method.

The standard errors of coverage probability ar€Z20;, 0.003 and 0.001
for a = 005 ; 0.1 and 0.01 respectively.

The results are given in Table 1. Metlwdn it denotes c.i. calculated by
(1.2) whereas$ —by (1.3). It can be seen that coverage prohgsilfor both
methods are very close to nominal 0.95 except twe @ =-09 for the
method based on pdf. The reason for that is predentFig.1 which gives the

fo
plot of function g(r,)= j f(r;p)dr for n=5, p=-09. The plot is very

-1

fo
“flat” so the solution of the equatiotff(r;p)dr =1—% can not be suffi-
-1
ciently accurate. The situation is even worse f@#9c.i. and quite good for
90%. For greater sample size this effect is neglkgi For example =10 then
coverage probability for methdd, confidence level 99% and =-09 is
0.988. It should be noted that c.i. based on pelfshorter than the one obtained
by means of transformation.

Table 1.Coverage probabilities and average |engthé_efa)10(% c.i. based on Fisher’s
z transformation and on pdf

Coverage probability Average length

p | method =005 | a=01 |a=001| a=005] a=01 | a=001
0.9 z 0.958 0.923 0.988 0.800 0.628 1.133
f 0.933 0.905 0.865 0.702 0.568 0.922
05 z 0.957 0.915 0.988 1.443 1.272 1.691
f 0.948 0.903 0.981 1.342 1.150 1.626
0 z 0.954 0.908 0.985 1.585 1.427 1.787
f 0.950 0.900 0.989 1.470 1.277 1.741
05 z 0.952 0.913 0.987 1.440 1.270 1.687
f 0.950 0.897 0.991 1.347 1.149 1.654
0.9 z 0.955 0.922 0.988 0.793 0.628 1.132
' f 0.952 0.901 0.991 0.788 0.605 1.196
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But also this transformation gives quite good resiftoverage probability)
in spite of small sample size and the fact thateshandbooks recommend it for
n>10 (Krysicki et al. , 1986). Newerthless for 90% ¢tiis method gives a
little too much coverage probability.
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O DWOCH PRZEDZIALACH UFNO SClI
DLA WSPOLCZYNNIKA KORELACJI

Streszczenie

Rozwaa st dwa przedzialy ufriei dla wspotczynnika korelacji w dwuwymiarowym roz-
ktadzie normalnym. Bierze ¢spod uwag préby o bardzo malej liczebfm n = 5. Przy pomocy
symulacji wyznacza siprawdopodobigstwo pokrycia orazredng dlugas¢ przedziatdw obliczo-
nych na podstawie przeksztalcerid&ishera oraz wyznaczonych na podstawie funkejtagci
wspotczynnika korelacji z préby.

Stowa kluczowe wspétczynnik korelacji, estymacja przedziatowegvpdopodobiastwo pokry-
cia, dtuga¢ przedziatu ufnéci
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