PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 06 |

Tytuł artykułu

Influence of light on phycobiliprotein production in three marine cyanobacterial cultures

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Complementary chromatic adaptation, a photomorphogenetic response, known to occur in many cyanobacteria, enables them to efficiently absorb prevalent wavelengths of light in the environment. In the present study, we have described the influence of light on phycobiliprotein production in three marine phycoerythrin producing cyanobacterial cultures, namely, Lyngbya sp. A09DM, Phormidium sp. A27DM and Halomicronema sp. A32DM. A comparative study (UV-visible overlay spectra and SDS-PAGE analyses) of phycobiliproteins purified from all the three cultures grown in white, yellow, red and green lights has been confirmed. White light was taken as control. Red and green lights were taken to check their effect on phycocyanin and phycoerythrin production, respectively. Yellow light was studied as its wavelength falls in between green and red light. Lyngbya sp. A09DM was found to be the best chromatically adapting cyanobacterium followed by Halomicronema sp. A32DM. These two cultures can be placed in group III chromatic adaptors. Phormidium sp. A27DM was the least chromatically adapting culture and can be placed in group II chromatic adaptors. The study signifies that even light plays an important role along with nutrient availability in adapting cultures to changing environmental conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

06

Opis fizyczny

p.1817-1826,fig.,ref.

Twórcy

autor
  • BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Sardar Patel University, Vallabh Vidyanagar, 388 120, Post Box No. 39, Anand, Gujarat, India
autor
  • BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Sardar Patel University, Vallabh Vidyanagar, 388 120, Post Box No. 39, Anand, Gujarat, India
autor
  • BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Sardar Patel University, Vallabh Vidyanagar, 388 120, Post Box No. 39, Anand, Gujarat, India
autor
  • BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Sardar Patel University, Vallabh Vidyanagar, 388 120, Post Box No. 39, Anand, Gujarat, India

Bibliografia

  • Ahluwalia AS, Rai RK, Kumar HD (1980) Chromatic adaptation and photoreversal in blue-green alga Calothrix clavata West. J Biosci 2:63–68
  • Alfonso M, Perewoska I, Constant S, Kirilovsky D (1999) Redox control of psbA expression in cyanobacteria Synechocystis strains. J Photochem Photobiol 48:104–113. doi:10.1016/S1011-1344(99)00038-X
  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435. doi: 10.1083/jcb.58.2.419
  • Bjorn GS, Bjorn LO (1976) Action spectra for conversions of phycochrome c from Nostoc muscorum. Physiol Plant 36:297. doi:10.1111/j.1399-3054.1978.tb02563.x
  • Bogorad L (1975) Phycobiliproteins and complementary chromatic adaptation. Annu Rev Plant Physiol 26:369–401. doi:10.1146/ annurev.pp.26.060175.002101
  • Bordowitz JR, Montgomery BL (2008) Photoregulation of cellular morphology during complementary chromatic adaptation requires sensor-kinase-class protein RcaE in Fremyella diplosiphon. J Bacteriol 190:4069–4074. doi:10.1128/JB.00018-08
  • Diakoff S, Scheibe S (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51:382–385. doi:10.1104/pp.51.2.382
  • Durnford DG, Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynth Res 53:229–241. doi:10.1023/A:1005815725371
  • Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signalled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241
  • Fujita Y, Hattori A (1962) Photochemical interconversion between precursors of phycobilin chromoproteids in Tolypothrix tenuis. Plant Cell Physiol 3:209–220
  • Fujita Y, Murakami A, Ohki K (1987) Regulation of photosystem composition in the cyanobacterial photosynthetic system: the regulation occurs in response to the redox state of the electron pool located between the two photosystems. Plant Cell Physiol 28:283–292
  • Gantt E (1975) Phycobilisomes: light harvesting pigment complexes. Bioscience 25:781–788
  • Gantt E (1977) Recent contributions in phycobiliproteins and phycobilisomes. PhotochemPhotobiol 26:685–689. doi:10.1111/j.1751-1097.1977.tb07553.x
  • Garfin DE (1990) One dimensional gel electrophoresis. In: Deutscher MP (ed) Methods in enzymology: guide to protein purification. Academic Press, California, pp 425–441
  • Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophy Chem 14:47–77. doi:10.1146/annurev.bb.14.060185.000403
  • Glazer AN, Lundell DJ, Yamanaka G, Williams RC (1983) The structure of a simple phycobilisome. Annu Microbiol (Inst Pasteur) 134B:159–180. doi:10.1016/S0769-2609(83)80103-3
  • Grossman AR (2003) A molecular understanding of complementary chromatic adaptation. Photosynth Res 76:207–215. doi:10.1023/A:1024907330878
  • Grossman AR, Kehoe DM (1997) Phosphorelay control of phycobilisome biogenesis during complementary chromatic adaptation. Photosynth Res 53:95–108. doi:10.1023/A:1005807221560
  • Grossman AR, Bhaya D, He Q (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276:11449–11452. doi:10.1074/jbc.R100003200
  • Hirose Y, Shimada T, Narikawa R, Katayama M, Ikeuchi M (2008) Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proc Natl Acad Sci USA 105:9528–9533. doi:10.1073/pnas.0801826105
  • Ishizuka T, Narikawa R, Kohchi T, Katayama M, Ikeuchi M (2007) Cyanobacteriochrome TePixJ of Thermosynechococcus elongates harbours phycoviolobilin as a chromophore. Plant Cell Physiol 48:1385–1390. doi:10.1093/pcp/pcm106
  • Kehoe DM (2010) Chromatic adaptation and the evolution of light colour sensing in cyanobacteria. Proc Natl Acad Sci USA 107:9029–9030. doi:10.1073/pnas.1004510107
  • Kehoe DM, Gutu A (2006) Responding to colour: the regulation of complementary chromatic adaptation. Annu Rev Plant Biol 57:127–150. doi:10.1146/annurev.arplant.57.032905.105215
  • Li H, Sherman LA (2000) A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 182:4268–4277
  • Li L, Alvey RM, Bezy RP, Kehoe DM (2008) Inverse transcriptional activities during complementary chromatic adaptation are controlled by the response regulator RcaC binding to red and green light responsive promoters. Mol Microbiol 68:286–297. doi: 10.1111/j.1365-2958.2008.06151.x
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275
  • Montgomery BL (2008) Shedding new light on the regulation of complementary chromatic adaptation. Cent Eur J Biol 3:351–358. doi:10.2478/s11535-008-0039-0
  • Mullineaux CW (2001) How do cyanobacteria sense and respond to light? Mol Microbiol 41:965–971. doi:10.1046/j.1365-2958.2 001.02569.x
  • Parmar A, Singh NK, Madamwar D (2010) Allophycocyanin from a local isolate Geitlerinema sp. A28DM (cyanobacteria): a simple and efficient purification process. J Phycol 46:285–289. doi:10.1111/j.1529-8817.2009.00798.x
  • Parmar A, Singh NK, Kaushal A, Sonawala S, Madamwar D (2011) Purification, characterization and comparison of phycoerythrins from three different marine cyanobacterial cultures. Bioresour Technol 102:1795–1802. doi:10.1016/j.biortech.2010.09.025
  • Quest B, Hubschmann T, Sharda S, Tandeau de Marsac N, Gartner W (2007) Homologous expression of a bacterial phytochrome. The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore. FEBS J 274:2088–2098. doi:10.1111/j.1742-4658.2007.05751.x
  • Singh NK, Parmar A, Madamwar D (2009) Optimization of medium components for increased production of C-phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresour Technol 100:1663–1669. doi:10.1016/j.biortech.2008.09.021
  • Soni B, Hassan MI, Parmar A, Ethayathulla AS, Kumar RP, Singh NK, Sinha M, Kaur P, Yadav S, Sharma S, Madamwar D, Singh TP (2010) Structure of the novel 14 kDa fragment of alpha-subunit of phycoerythrin from the starving cyanobacterium Phormidium tenue. J Struct Biol 171:247–255. doi:10.1016/j.jsb.2010.05.008
  • Stomp M, van Dijk MA, van Overzee HM, Wortel MT, Sigon CA, Egas M, Hoogveld H, Gons HJ, Huisman J (2008) The time scale of phenotypic plasticity and its impact on competition in fluctuating environments. Am Nat 172:169–185. doi:10.1086/591680
  • Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130:82–91
  • Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: the early observations. Photosynth Res 76:193–205. doi:10.1023/A:1024954911473
  • Waterbury JB, StanierRY(1981) Isolation and growth of cyanobacteria from marine and hypersaline environments. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 221–223

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9964cbc6-f71a-4cd4-ab30-581db9baf739
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.