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ABSTRACT. Many information of biological study as stained cells analysis under microscope 

cannot be obtained rich information like detail morphology, shape, size, proper intensity etc. but 

image analysis software can easily be detected all these parameters within short duration. The cells 

types can be yeast cells to mammalian cells. An attempt has been made to detect cellular 

abnormalities from an image of metronidazole (MTZ) treated compared to control images of 

peripheral erythrocytes of fish by using non-commercial, open-source, CellProfiler (CP) image 

analysis software (Ver. 2.1.0). The comparative results were obtained after analysis the software. In 

conclusion, this image based screening of Giemsa stained fish erythrocytes can be a suitable tool in 

biological research for primary toxicity prediction at DNA level alongwith cellular phenotypes. 

Moreover, still suggestions are needed in relation to accuracy of present analysis for Giemsa stained 

fish erythrocytes because previous works have been carried out images of cells with fluorescence 

dye.  

1. INTRODUCTION 

The cells analysis with different stains under microscope is a technique where different cellular 

morphology can be identified. It has been well established by several researchers from decade [1-4]. 

But this analysis may be time consuming by large scale screening, visual error by individual eye 

estimation, sometimes missing of cellular features as subtle change undistinguishable by eye 

visually and also requires proper expertise to recognize cellular features. To minimize time, visual 

error, proper identification of cellular features etc. cell analysis with algorithm based software has 

been recommended by researchers [5-11] however, the proper set up may be tedious to incorporate 

the input data in the software [11]. 

Generally cell image analysis has been showed accurate identification and measurement of all types 

of cellular features by automatic analysis of certain phenotypes through software, previously 

studied by many researchers [6, 8, 11, 12-24]. It was also known that machine learning methods, 

which have been selected and combined multiple features for automated cell classification and used 

to detect many cellular phenotypes [12, 13, 15, 17, 18-25].  

According to Carpenter et al. [6], the easy screening image analysis software, CellProfiler (CP) is 

freely available (non-commercial) image analysis software, can capable of handling 100 nos. of 

International Letters of Natural Sciences Submitted: 2016-02-21
ISSN: 2300-9675, Vol. 54, pp 27-41 Revised: 2016-03-25
doi:10.18052/www.scipress.com/ILNS.54.27 Accepted: 2016-05-04
© 2016 SciPress Ltd., Switzerland Online: 2016-05-11

SciPress applies the CC-BY 4.0 license to works we publish: https://creativecommons.org/licenses/by/4.0/

http://dx.doi.org/10.18052/www.scipress.com/ILNS.54.27


images of any cell types like yeast colony to mammalian cells [11]. CP software helps to detect the 

biological information quickly with statistical power and the simple cellular morphology viz. cell 

count, shape, size, etc. alongwith protein levels in individual cell as well as complex morphological 

parameters like cell/organelle shape or subcellular patterns of DNA or protein from stained images. 

Many works have been carried out on fluorescent stained cells but no one has been attempted before 

Giemsa stained image analysis from erythrocytes of fish to detect rich information from stained 

cells by using CP. 

The present study attempts to detect cells morphology and phenotype from Giemsa stained images 

of micronucleated erythrocytes compared with normal erythrocytes by using CP image analysis 

software because several features cannot be identified only under microscope when visualize 

stained cells. 

2. MATERIALS AND METHODS 

2.1 Selection of software and images as input 

Images of Giemsa stained normal and micronucleated peripheral erythrocytes were processed by 

using CellProfiler or CP (Version 2.1.0), this software was downloaded from the website as 

http://www.cellprofiler.org/download.shtml. The input data were incorporated in the present 

software by trial and error method with the help of CP manual published through the mentioned link 

(http://www.cellprofiler.org/linked_files/Documentation/cp2.1.1_manual_6c2d896.pdf) for detail 

description for users [6]. The CP software interface is depicted on the basis of selected input and 

analysis modules for the present study (Fig. 1). 

The two images were taken from previous research work on metronidazole (MTZ) induced 

genotoxicity in peripheral erythrocytes of fish [26]. In the present study, the images were selected 

two types of cells and nuclei deformities as micronucleated and normal erythrocytes of fish. Both 

images were incorporated and analysed in the software separately as per selected input and analysis 

modules. These images were obtained through CP are depicted in Fig 2 and 2a. 

2.2 Measurement of cellular features 

In each image, the area, shape, intensity, and texture was measured as per appropriate input and data 

were found in .csv extension. It was well established that CP can measure a variety and number of 

features for individual identified cell or compartmentalize at subcellular level included area, shape, 

intensity and texture of objects. These are common features, which described by researchers [6, 11, 

13, 27] but the complex measurements like zernike shape features (shape descriptors of objects in 

image), Haralick and Gabor texture features have also been studied before by other researchers, 

which are found in detail in the CP manual [12, 28-31]. 

In the present study, the measurement of both images were considered separately as input. For 

individual parameter viz. apply threshold, correct illumination apply, crop image, enhance edges, 

mask and morph image, identify primary, secondary and tertiary objects, mask objects, intensity, 

size and shape, radial distribution of objects, cells, cytoplasms and nuclei location centre from X 

axis were selected in the software and analysed all the data (Fig. 1). The data were obtained through 

images and various computerized simulation processes and saved as .csv file. 

2.3 Image processing and data gathering for rich information in cells 

According to Carpenter et al. [6], the cellular analysis were done by compartmentalize morphology 

of cells, object validitied by green, yellow and red colours, which identified nuclei, cytoplasms and 

cells boundaries, location comparison of nuclei, cytoplasms and cells in each image, total intensities 

were compared for nuclei, cytoplasms and cells. The features were studied primarily related to 

object shape of nuclei, cytoplasms and cells, descriptor based zernike moments 0 order to 9 order 

and total nos. of pixels. The features were compared for nuclei, cytoplasms and cells for each image 

separately. 
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3. RESULTS 

Images of Giemsa stained normal (control) and micronucleated (experiment) peripheral 

erythrocytes were inserted in the CP software separately alongwith setting of all the selected 

necessary parameters as input and analysed data (Fig. 1). The images were obtained through CP in 

measured position after incorporated in the software (Fig. 2 and 2a). In case of threshold 

application, it was observed the threshold value of 0.08 and 0.19 for control and experiment images 

respectively and the images after thresholding are depicted in Fig. 3 and 3a. The output as 

illumination correction after apply is depicted in Fig. 4 and 4a for control and experiment 

respectively. The image crop was applied for both the control and experiment images and the results 

are depicted in Fig. 5 and 5a. The enhance edge application as peripheral boundary of individual 

object for the both images were obtained and the results are depicted in Fig. 5 and 5a. The results 

were obtained after masking and morphing the images for control and experiment and are depicted 

in Fig. 7 and 7a and 8 and 8a respectively. 

In case of control and experiment primary object data, it was observed that marking of nuclei by 

outline, the data were obtained 10th pctile diameter (14.3 and 13.4 pixels) while 90th pctile 

diameter (34.1and 32.3 pixels) respectively. The results for both types of images as output are 

depicted in Fig. 9 and 9a. In case of control and experiment secondary object data, it was observed 

that marking of all the cells and nuclei boundary in individual image, the data were obtained 10th 

pctile diameter (14.9 and 13.9 pixels) while 90th pctile diameter (36.5 and 36.1 pixels) respectively. 

The results for both types of images as output are depicted in Fig. 10 and 10a. In case of control and 

experiment tertiary object data, it was observed that marking of all the nuclei, cells and cytoplasm 

by separate outline for individual image. The results for both types of images as output are depicted 

in Fig. 11 and 11a. The masking objects for all the cells and masked nuclei were obtained for 

control and experiment images separately and are depicted in Fig. 12 and 12a. 

The object intensities were obtained of different parameters viz. integrated intensity, integrated 

intensity edge, center mass intensity X, center mass intensity Y, maximum intensity X and 

maximum intensity Y for cells, cytoplasms and nuclei separately for both control and experiment 

images, which are expressed by histogram (Fig. 13 and 13a). Lower intensity values were observed 

in experiment when compared to control image for cells, cytoplasms and nuclei. In case of objects 

shape and size data, it was observed that in experiment image the area, perimeter and minimum and 

maximum ferret diameter of cells, cytoplasm and nuclei were showed lower value except center X 

and Y (higher value), when compared to control value, histogram illustrated in Fig. 14 and 14a. 

In Fig. 15 and 15a, it was observed for cells, cytoplasms and nuclei of control and experiment 

images separately for zernike moments of order 0 to order 9. The minimal differences were 

observed between control and experiment images.  

4. DISCUSSION 

The present study was emphasized on the basis of visually observed peripheral erythrocytes of fish, 

one is normal (without treatment as control) image and other is micronucleated cells (treated with 

MTZ) image to screen morphological and phenotype differences after automated analysis through 

CP, an image based analysis software. This software can screen easily of 2D images and detect 

different parameters of cellular phenotype viz. size, shape, intensity, texture etc. through high 

throughput way [6]. According to their concept and software manual, the present study was dealt 

with Giemsa stained nuclear abnormalities cells compared with control cells. The data obtained 

after the analysis of CP software that cannot be possible to study cellular morphology visualization 

only under microscope.  

CP has already been used by several laboratories in the globe and researchers are studying a variety 

of biological processes in different cell types and organisms, viz. yeast colony, Drosophila 

melanogaster (S2R+ cells, epithelial tissues), various human samples namely TOV21G, prostate 

gland tissue, stem cells of mesenchymal origin, H1299 lung cancer cell lines, mouse samples such 
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as NIH/3T3 cell lines, neural precursor cells of embryos, cells from lung tissue, germ cells and also 

H9c2 cell lines of rat model [6, 11, 16, 32-36]. 

It was reported by Lamprecht et al. [7] that CP has also modified for the measurement of yeast 

colonies, yeast growth patches, wounds healing assays and tumours quantification. But in the 

present study, Giemsa stained fish blood cells may provide cellular features through CP analysis 

and also informed cellular deformities with special reference to nuclei abnormalities by object 

intensity, shape and size and pixel size of primary (nuclei) and secondary (cells) object data.  

According to Khotanzad and Hong, [37], Suk et al. [38] and [39], zerrnike moment is a viable shape 

descriptors to screen accuracy and this parameter could be ideal for applications when little data is 

provided in algorithm. The present results were showed very minimal difference between control 

and experiment images, which is expressed in histogram (Fig. 14 and 14a) while other parameters 

such as object intensity and object shape and size were observed a good differences in experiment 

when compared to control images (Fig. 12 and 12a and 13 and 13a). The present study with Giemsa 

stained erythrocytes whether worked properly by using this present software still unclear in many 

aspects. It is required necessary suggestions by other researchers, those who have been investigated 

and/or working with fluorescence stained cells.  

5. CONCLUSION 

In conclusion, present study is an approach to screen images of Giemsa stained peripheral 

erythrocytes of fish to know differences of MTZ treated micronucleated cells compared to control 

cells on the basis of object identification, shape, size, zernike moment by using CP software, an 

image based analysis software developed by Carpenter et al. [6]. However, the study has been 

reported majorly in fluorescence stained images except the study of yeast colony [11]. This study 

can be a suitable tool for biological research for extraction of rich information in image for nuclei 

stained with DNA binding non-fluorescence dye and to know easily cell deformities with the 

special reference to the change of objects intensity, shape, size and area of cells, nuclei and 

cytoplasm after the exposure of toxins.  

In other words, also necessary suggestions are required to know how far the present work is done 

accurately for Giemsa stained cells because previous works have been carried out with images of 

fluorescence dye in different cell types except yeast colony. 
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Fig. 1 CP interface of different modules selected for control and experiment images 

        

Fig. 2 Original image of control   Fig. 2a Original image of experiment  

obtaining through CP software                        obtaining through CP software 

    

Fig. 3 Threshold apply control image output 
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Fig. 3a Threshold apply experiment image output 

 

Fig. 4 Correct Illumination apply control image output 

 

Fig. 4a Correct Illumination apply experiment image output 

 

Fig. 5 Crop output of control image 
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Fig. 5a Crop output of experiment image 

 

Fig. 6 Enhance edges output of control image 

 

Fig. 6a Enhance edges output of experiment image 

 

Fig. 7 Mask output of control image 
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Fig. 7a Mask output of experiment image 

 

Fig. 8 Morph output of control image 

 

Fig. 8a Morph output of experiment image 

 

Fig. 9 Primary object output data for control image 
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Fig. 9a Primary object output data for experiment image 

 

Fig. 10 Secondary object output data for control image 

 

Fig. 10a Secondary object output data for experiment image 

 

Fig. 11 Tertiary object output data for control image 
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Fig. 11a Tertiary object output data for experiment image 

 

Fig. 12 Mask objects output for control image 

 

Fig. 12a Mask objects output for experiment image 

 

Fig. 13 Histogram of control object intensity data (arbitrary unit) 
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Fig 13a Histogram of experiment object intensity data (arbitrary unit) 

 

Fig 14 Histogram of control object shape and size data (arbitrary unit) 

 

Fig 14a Histogram of experiment object shape and size data (arbitrary unit) 
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Fig. 15 Histogram of control object zernike moment data (arbitrary unit) 

 

Fig. 15a Histogram of experimental object zernike moment data (arbitrary unit) 
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