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The aim of this study is to estimate the area with forest vegetation that does not yet meet the

criteria formulated in the FAO/UN definition (minimum height 5 m, minimum canopy cover

10%, minimum area 0.5 ha), but will potentially meet them in the future (5 years or more,

depending on the individual site conditions), which means that (according to the definition)

they also represent forest areas. The study was conducted in the Białowieża Glade. Tree species

were classified individually and then divided into two groups: those that will reach a height of 5 m

in the future and those that will not (grey willow, hawthorn). Hyperspectral (reduced with MNF

transformation) and ALS−based features were used for classification with the SVM algorithm.

Classification accuracy based on ALS data was better than that of hyperspectral data for indi−

vidual species but similar for the two species groups – 95.5% (Kappa 87.5%). Information about

species and height was used to perform the classification of a fishnet layer into ‘forests’, ‘potential

forests’ and ‘non−forests’, with an accuracy of 96% (Kappa 87.7%). A map of forests and potential

forest vegetation was created in the form of a thematic map, taking into account height, canopy

cover, area of the complex and land use. This study provides new solutions in the context of cli−

mate change, deforestation and the need for reporting the forest area by individual countries

(including Poland) to the FAO/UN.

Introduction

Globally, there are various forest definitions. Some of them are formulated in national laws, others

are international. The differences in forest definitions result from the different characteristics

of forest vegetation around the world and the different forms of land use and forest management

(Putz and Redford, 2009). There are also economic and political reasons why different countries

consider certain areas to be forests (Sasaki and Putz, 2009). Poland (like many other countries)

is required to its report forest area to the Food and Agriculture Organization of the United Nations

(FAO/UN). For details, see the forest definitions of the 1991 Forest Act and the FAO/UN

(Forest Resources Assessment 2004, 2007, 2012; Table 1). Post−agricultural areas with forest

succession, which have not been officially reclassified from agricultural to forest lands, are not
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considered forests according to the Law on Forests, contrary to the FAO/UN definition, which

does not refer to the official status of the land with forest vegetation (Jabłoński, 2015; Jabłoński

et al., 2017).

Aerial and satellite imagery have been successfully used since the early 2000s to estimate

forested areas, with an 80% accuracy (Kunz et al., 2000; Haapanen et al., 2004; Wężyk and de

Kok, 2005; Próchnicki et al., 2006; Wang et al., 2008; Pekkarinen et al., 2009; McRoberts, 2011,

2012; Hościło et al., 2015; Kolecka et al., 2015; Thompson et al., 2016; Szostak et al., 2017). Using

airborne scanner lasing (ALS) data makes it possible to obtain similar or better estimates of forest

area (Castillo−Núńez et al., 2011; McRoberts et al., 2012; Pujar et al., 2014; Kolecka et al., 2015;

Naesset et al., 2016; Thompson et al., 2016; Szostak et al., 2017). However, there is a lack of studies

that detect potential forest areas, namely areas covered with trees which do not reach the required

height (5 m) and canopy cover (10%) but are expected to, in 5 years or more, depending on the

individual site conditions (according to the FAO/UN definition).

To determine whether or not an area will become forest (as defined by the FAO/UN), it is

critical to determine what tree species are present and whether they will reach the required height

under certain growth conditions. In this context, remote sensing is useful for determining tree

species composition over large areas (Potapov et al., 2008; Fassnacht et al., 2016).

Airborne laser scanner data are useful to perform species−based classification based on

structural, spectral or intensity features (Yao et al., 2012; Hovi et al., 2016; Kamińska et al., 2021;

Michałowska and Rapiński, 2021). The highest overall accuracy of species classification based

on the ALS data was achieved using the full waveform data (Hovi et al., 2016). However, radio−

metric features also allow for a high accuracy (You et al., 2020). Combining radiometric features

with ALS elevation information could allow us to take advantage of the complementary bene−

fits of the different information sets needed for species classification, thereby improving the

overall accuracy by up to 93% (Zhang and Liu, 2012; Shi et al., 2018; You et al., 2020).

The continuous spectral information contained in hyperspectral data appears to be extremely

useful for distinguishing tree species with similar spectral characteristics (Farreira et al., 2016;

Wietecha et al., 2017). For example, Dalponte et al. (2012) achieved a higher classification accuracy

for seven species and non−forest class, five groups of species and no forest class and two groups

of species (coniferous, deciduous) and non−forest class using the SVM method (74.1−95.8%)

compared to Random Forests (RF) (69.4−94.4%) performed on the hyperspectral and ALS data

Variables Act on Forests 1991 (Poland) FAO/UN

Minimum area [ha] 0.1 0.5

Minimum height [m] – 5

Minimum crown coverage [%] – 10

Width of the forest complex [m] – –

Land intended for renovation yes yes

Land intended for natural succession yes yes

Hunting plots yes yes

Christmas tree plantations yes yes

Agricultural land (according to the land 

registry) with secondary succession
no yes

Land related to forest management yes yes

Orchards and urban greenery no no

Table 1.

Criteria for delimiting forest areas
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representing the study area in northern Italy. Similarly, Ghosh et al. (2014) achieved a higher

accuracy using the SVM classifier method (81−92.7%) than RF (78−81.5%).The combination 

of LiDAR data with multispectral or hyperspectral imagery can further improve the classification

accuracy (Liao et al., 2018, 2019; Shi et al., 2018, 2019; Yang et al., 2019).

In this work, the SVM algorithm was used to perform supervised parametric pixel−based

species classification of hyperspectral data and ALS features. Support Vector Machines (Vapnik,

1999) is a supervised, nonparametric machine learning algorithm and performs well on high−dimen−

sional data, often outperforming other algorithms in comparative studies (Hughes, 1968; Melgani

and Bruzzone, 2004; Dalponte et al., 2008; Mountrakis et al., 2011; Heinzel and Koch, 2013).

The SVM classifier searches for the optimal hyperplane to discriminate between defined target

classes, using kernels to expand the feature space (James et al., 2013). The radial kernel tends

to handle nonlinear data well (James et al., 2013) and has been used in previous studies on tree

species classification (e.g., Fassnacht et al., 2014; Ghosh et al., 2014). 

In this context, the aim of the present study is to classify tree species in the Białowieża

Glade into two groups – those that will reach a height of 5 m and those that will not, with the

goal to determine which dataset (hyperspectral or ALS) provides better classification results, to

develop a methodology for mapping areas of potential forest vegetation and to estimate the area

of potential forest vegetation in the Białowieża Glade.

Materials and methods

STUDY AREA. The Białowieża Glade (Fig. 1) is located in the heart of the Białowieża Forest, near

the border to Belarus. The clearing is 14 km˛ in size and has the shape of a square, with a side length

of 4 × 4 km. The Białowieża Glade is a perfect example of an area with abandoned agriculture,

where secondary succession is in full swing. The most common species forming the succession

are birch, aspen, alder, hornbeam and willow (Pabjanek, 2003).

Fig. 1.

Study site−Białowieża Glade (Pabjanek, 2003) 
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DATA. In August 2019, 40 hyperspectral flight strips were acquired using a HySpex VNIR−1800

and as SWIR−384 camera. The HySpex VNIR−1800 operates in the 0.4−1.0 µm spectral range,

covered by 182 bands, and the HySpex SWIR−384 operates in the spectral range of 1.0−2.5 µm,

covered by 288 bands and with 384 spatial pixels. Images were acquired with a spatial resolution

of 2 m; both sensors provide images with a radiometric resolution of 16 bits (NorskElektroOptikk

AS, 2019). Images from the two sensor systems were stacked, resulting in images with a spatial

resolution of 2 m in 430 bands. 

All pre−processing, namely orthorectification, geometric and atmospheric corrections, was

performed by the data provider (MGGP AERO co.). The processing steps included a PARGE

geometry correction based on GPS/IMU data. Subsequently, atmospheric correction was per−

formed using the MODTRAN5 model implemented in the ATCOR4 software. 

Airborne laser scanner data (ALS) were acquired in August 2019, using a Riegl VQ−780i

full waveform system (RIEGL Laser Measurement Systems, Austria); the obtained point cloud

had an average density of 19 pts/m2. The entire Białowieża Forest was covered by 88 flight

lines, with a 20% side overlap. Data were collected with a maximum scan angle of ±60° and 

a laser beam size of 0.25 m. A digital terrain model (DTM) and a digital surface model (DSM)

were created from the ALS data (both with a resolution of 0.5 m).

The data were created for the project LIFE+ – ForBioSensing PL ‘Comprehensive

Monitoring of Stand Dynamics in the Białowieża Forest using Remote Sensing Techniques’.

The entire area of the Białowieża Glade was classified with the adjacent buffer zone of the

Białowieża Forest stand in a width of 100 m.

AREAS WITHOUT FOREST VEGETATION EXTRACTION. Areas with a canopy height model (CHM)

(created on the basis of the ALS point cloud) of less than 1 m were excluded from the analysis

because we did not classify cropland, meadows and pastures. Areas without vegetation were also

excluded from the analysis, using a vegetation mask based on the mNDVI705 vegetation index

(Sims and Gamon, 2002) calculated on the basis of hyperspectral data using spectral bands of

750, 705 and 445 nm. All pixels with mNDVI705 index values below 0.44 were excluded. The

threshold was derived using visual assessment and has been shown to reliably distinguish areas

with and without forest vegetation throughout the Białowieża Forest by Modzelewska et al. (2020).

The equation is as follows:

mNDVI705 = (750 nm – 705 nm) / (750 nm + 705 nm – 2 · 445 nm)

Rivers, ponds, water bodies, cultivated land, cemeteries, roads, debris, telephone poles, parking

lots, landfills, apiaries, raspberry fields, currant fields, orchards and parks (i.e., agricultural or

municipal land) were excluded from further analysis of land area as defined by the FAO/UN

with a vector layer representing the Land and Buildings Evidence Map. Some of the areas could

have been already extracted in the previous step as the mask layers overlap.

The remaining land, cropland, grassland (possibly abandoned), fallow land, wasteland,

plantations, forest edges, trees and other green areas were included in the analysis (Fig. 2).

ALS FEATURE EXTRACTION. Classification features were derived from height measurements of

ALS (‘structural features’) and the ALS intensity distribution (‘intensity features’). Intensity

and some of the structural features were calculated only for ALS points above the mean half of

the highest ALS point (H=Hmax/2) recorded in a given segment (Kamińska et al., 2018). Intensity

features were calculated only up to the first returns. Structural features related to tree height

were omitted due to overfitting the model to classify two groups (trees up to 5 m and over 5 m).
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As many of the characteristics were highly correlated, Pearson´s correlation coefficient was used

to determine pairwise correlations. Starting with the most important variable and moving to the

less important ones, highly correlated characteristics (r>0.9) were systematically removed, leaving

a set of the 15 most important and uncorrelated predictors. Table 2 provides an overview of all

15 features used in the classification.

Fig. 2.

The hyperspectral image after mask−
ing

Feature Description

Structural features
Hcv The coefficient of variation of all returns above half height of the segment from the point cloud

Hdist_1_2 The mean of the distance between the first and second return of each point

CanRR The canopy relief ratio of points for all returns above half height of the segment from 

the point cloud: (avg(X)−min(X))/(max(X)−min(X))

PFRAH The percentage of first returns above half height of the segment in relation to first returns 

from the whole point cloud

PARAH The percentage of all returns above half height of the segment in relation to first returns from

the whole point cloud

Rcrown The ratio of the number of points at a distance of ±25 cm from CHM to all points classified 

as vegetation

Rs_all The ratio of the first or single return points to all return points classified as vegetation

Rg_all The ratio of points classified as the ground to all return points

Intensity features
Imax The maximum of the intensity values

Imode The mode of the intensity values

Isd The standard deviation of the intensity values

IIQR The inter−percentile range of the intensity values

Ikurt The kurtosis of the intensity values

Ip10 The 10th percentile of the intensity values

Ip90 The 90th percentile of the intensity values

Table 2.

Features derived from the ALS data
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ALS DATA CLASSIFICATION PROCESS. To classify tree species based on ALS data, we used indi−

vidual tree segments delineated according to the method of Stereńczak et al. (2020). Polygonal

layers representing crowns of individual trees (with a given area and height) created for the project

LIFE+ – ForBioSensing PL ‘Comprehensive Monitoring of Stand Dynamics in the Białowieża

Forest using Remote Sensing Techniques’ were used for the analyses. The segmentation method

uses the CHM and adaptive kernel windows in relation to tree height; taller trees were smoothed

with a larger kernel window and shorter trees with smaller kernel windows. In total, three groups

of trees were defined with respect to height for coniferous and deciduous tree species. Evaluation

of the results shows that the method works well for dominant trees in the sample and can be used

to accurately detect trees divided into coniferous, deciduous and mixed trees, namely 85%, 85%

and 75%, respectively.

We adopted a threshold/minimum of 30 samples (one for each segment representing a sin−

gle tree) per species and ultimately included 317 trees of 10 species in the study (30 to 33 per

species). We tested different values in the fitting process with the specific optimal parameters

based on the highest overall classification accuracy. To avoid overfitting the classification model,

a five−fold cross−validation was performed, repeated 20 times, and the mean classification accu−

racy indices were determined. Classification and optimisation were performed using the Caret

package in R (R Core Team, 2021). Classification 1 was performed for 10 tree species individ−

ually, and the results were aggregated into two species groups (those that will reach a height of

5 m and those that will not), referred to Classification 2.

HYPERSPECTRAL DATA MINIMUM NOISE FRACTION TRANSFORMATION. Although hyperspectral data

are highly informative, spectrally contiguous bands are correlated with each other, which can

affect the classification success. To obtain uncorrelated components from hyperspectral data, we

applied minimum noise fraction (MNF) transformation (Green et al., 1988). In previous studies,

using MNF bands as input to classification algorithms instead of the original hyperspectral bands

has led to better results (Zhang and Xie, 2012; Fassnacht et al., 2014; Ghosh et al., 2014).

The MNF uses cascaded PCA transformation to separate information and noise. In the first

step, noise and information are separated, and subsequently, the new and uncorrelated components

are arranged in decreasing order according to the eigenvalues. The MNF bands are divided into

two categories, where the first components with eigenvalues above 1 typically contain relevant

information, whereas those with eigenvalues below 1 are typically noisy (Vincheh and Arfania,

2017). Finally, the components 1 to 19 (eigenvalues 2) were selected as input for classification.

HYPERSPECTRAL DATA CLASSIFICATION PROCESS. The reference pixels for the classification of

hyperspectral data were divided into 50% training (150) and 50% (150) test pixels (2×15 points

for each class) to obtain a high classification accuracy. The reference pixels were located in areas

in which particular species represented the vegetation, determined during the field inventory

performed in April 2021. No more than one point represented a homogenous forest patch, and

we avoided the location of points in areas with a mixed species composition.

Classification 3 was performed for 10 tree species individually (Hornbeam – Carpinus L.,

Alder – Alnus Mill., Oak – Quercus L., Willow – Salix caprea L., Poplar – Populus L., Grey Willow

– Salix cinerea L., Hawthorn – Crataegus L., Birch – Betula L., Pine – Pinus L., Spruce – Picea A.

Dietr.), whereas Classification 4 was performed for the six species groups created based on the

similarity/closeness of the spectral profiles (Hornbeam+Alder, Oak+Willow+Poplar, Grey Willow,

Hawthorn, Birch, Coniferous) (Fig. 3). The results of Classification 4 (six species groups) were

aggregated into two species groups (‘Forest species’ and ‘Non−forest species’) and referred to as
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Classification 5. The parameters for the SVM classification were kernel type: radial basis function,

gamma in kernel function: 1, penalty parameter: 100, pyramid level: 0, classification probability

threshold: 0.

ESTIMATING THE AREA OF ‘POTENTIAL FORESTS’. Geometric vegetation parameters (height, crown

projection area – area under the single tree crown, minimum complex area – polygon represent−

ing a single forest complex) were used to classify the area with forest vegetation (Hycza et al.,
2021); land use information was not used. Polygons representing individual tree crowns from

segmentation were provided with information on their height and crown projection area, and the

area with forest vegetation was calculated according to the FAO/UN definition.

The area for which percent cover was calculated was artificially generated by dividing the

entire area to be analysed into a 0.01 ha (10×10 m) fishnet and dividing the total area of poly−

gons representing tree canopies with a height of at least 5 m by the area of the fishnet (Straub

et al., 2008). The fishnets were created to produce a thematic map representing the vegetation

of the entire study area with and without forest, as defined by the FAO/UN. The fishnets with

woody vegetation �5 m and canopy cover �10% were classified as ‘forest’, and those with woody

vegetation �5 m now but �5 m in the future and canopy cover �10% were classified as ‘potential

forests’. All other fishnets were classified as ‘non−forest’ (Fig. 4).

Accuracy estimation of ‘forests’, ‘potential forests’ and ‘non−forests’ was conducted using

a series of 120 test points representing the three classes above, manually established in the study

Fig. 3.

Spectral profiles for the individual species

Fig. 4.

Area for which the percentage cover was calcu−
lated: Method 2 (Straub et al., 2008)

Borders of the spatial unit

Area under canopy cover

Remaining area
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area using the orthophotomap, the canopy height model and data from the site inventory con−

ducted in April 2021. The results of the accuracy assessment are presented in Table 4.

Results

CLASSIFICATION INTO SPECIES. The images after MNF transformation and, in particular, the first

19 bands of the image and the 15 most important ALS features were subjected to the Support

Vector Machine (SVM) classification algorithm. The results of the classification accuracy analy−

sis are shown in Table 3.

The accuracy of Classification 4 (ALS data into 10 species) was 81.5% (Kappa 79.4%), with

producer’s and user’s accuracy values >71% for particular species. The accuracy of Classification

3 (hyperspectral data into 10 species) was 67.3% (Kappa 63.7%). Pine and poplar were falsely

classified as other species, and the producer’s accuracy of willow was only 5%. The accuracy of

Classification 4 (hyperspectral data into six groups) was 93.5% (Kappa 87.5%). Both producer’s

and user’s accuracy were >85% (except for hawthorn), reaching 100% for coniferous species.

The accuracy of Classifications 2 and 5 (into two groups) was similar with 95−96%.

Figure 5 shows the classification results for the selected part of the Białowieża Glade.

Forest species were correctly classified, regardless of their height and age. Young spruce and

mature forest vegetation were classified as ‘forest species’. Grey willow, which does not reach 

a height of 5 m, was classified as a ‘non−forest species’.

ESTIMATING THE AREA OF ‘POTENTIAL FOREST’ . Table 4 shows the area of networks represent−

ing forests, potential forests and no forests. In the Białowieża Glade, the class of ‘forests’ occu−

pied 742.9 ha (HI) and 683.3 ha (ALS), and the class of ‘potential forests’ occupied 34.6 ha (HI)

and 36.2 ha (ALS). The class of ‘non−forests’ occupied 1,034.8 ha (HI) and 1,092.7 ha (ALS).

This means that more fishnets are classified in the ‘forests’ class with the hyperspectral data

than with the ALS data.

Figure 6 shows the results of estimating the areas of ‘forests’, ‘potential forests’ and ‘non−

forests’, based on the network thematic map, and reflects the actual condition shown in Figure 5.

Mature trees were represented as ‘forests’, whereas young spruce trees were represented as ‘poten−

tial forests’ and grey willows as ‘non−forests’.

ACCURACY ASSESSMENT OF ‘FORESTS’, ‘POTENTIAL FORESTS’ AND ‘NON−FORESTS’ AREA ESTIMATION.

Accuracy estimation of ‘forests’, ‘potential forests’ and ‘non−forests’ was performed using a set

of 120 test points representing these classes. The results of the accuracy estimation are pre−

sented in Table 5. Slightly better results (92.5%) were obtained with the hyperspectral data set

than with the ALS data (90%). When classifying hyperspectral data, the producer’s accuracy for

‘potential forests’ was 80%, and the user’s accuracy was 97%. When classifying ALS data, the

producer’s accuracy for ‘potential forests’ was 72.5%, and the user’s accuracy was 96.7%.

The areas of ‘forests’, ‘potential forests’ and ‘non−forests’ could not be compared with the

data from a local database because the ‘Forest law' of 1991 does not include the definition of 

a 'potential forest', therefore this kind of class does not exist in any database.

Discussion

The aim of this study was to classify the tree species in the Białowieża Glade into species that

will not reach a height of 5 m (hawthorn, grey willow) and other species that will reach a height

of 5 m when mature. This is important in the context of estimating and reporting potential for−
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Classification 1

Overall accuracy [%] Kappa coefficient [%]
81.45 79.35

Producer's accuracy [%] User's accuracy [%]
Alder 73.5 73.9
Birch 89.5 77.5
Grey willow 88.5 89.0
Hawthorn 79.8 77.0
Hornbeam 95.1 92.0
Oak 73.0 75.1
Pine 89.8 89.8
Spruce 79.7 93.9
Poplar 68.0 85.6
Willow 71.0 61.5

Classification 2
Overall accuracy [%] Kappa coefficient [%]

95.49 87.51
Producer's accuracy [%] User's accuracy [%]

Forest species 97.0 97.1
Non−forest species 90.5 90.4

Classification 3
Overall accuracy [%] Kappa coefficient [%]

67,34 63.74
Producer's accuracy [%] User's accuracy [%]

Alder 90 75
Birch 80 100
Grey willow 100 50
Hawthorn 75 78.95
Hornbeam 95 82.61
Oak 45 81.82
Pine 0 0
Spruce 100 50
Poplar 0 0
Willow 5 100

Classification 4
Overall accuracy [%] Kappa coefficient [%]

93.47 81.76
Producer's accuracy [%] User's accuracy [%]

Alder+Hornbeam 98.31 85.29
Birch 100 95.24
Coniferous 100 100
Grey willow 85 94.44
Hawthorn 65 92.86
Oak+Poplar+Willow 95 100
Classification 5

Overall accuracy [%] Kappa coefficient [%]
95.98 87.71

Producer's accuracy [%] User's accuracy [%]
Forest species 96.86 98.09
Non−forest species 92.5 88.1

Table 3.

Classification results
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est area according to the FAO/UN definition of forest. However, this issue is poorly addressed

in the existing literature.

It is worth noting that among the species in the study area, only hawthorn and grey willow

do not reach the maximum height of 5 m, of which the latter is genetically closely related to wil−

low, which will reach the height of 5 m. The other species, including oak, birch, hornbeam,

pine, spruce, poplar and alder, largely exceeded a height of 5 m when mature. We did not hold

on rigidly to the 5−year criterion because the definition contains the following statement: 5 m

or more, depending on the individual site conditions. Classification of the ALS data into 10

species was significantly better (81.4%) than classification using the hyperspectral data (67.3%).

Classification of the hyperspectral data into two species groups was slightly better (96%) than

classification of the ALS data (95%). The less species/group of species were classified, the higher

the classification accuracy. The species classification accuracy (two classes) achieved in this

study (95%−96%) is similar to that of Dalponte et al. (2009, 2012, 2013) – 95.8% (three classes),

Ghosh et al. (2014) – 96.5%, Ghiyamat et al. (2013) – 92.6% (three classes) and Forzieri et al.
(2012) – 85% (four classes), although it was carried out for very young trees.

In terms of the cost−benefit ratio, the ALS data seem to be more useful than the hyper−

spectral data, providing more reliable results for single species classification and almost the

Class Hyperspectral data (ha) ALS data (ha)

Forests 742.9 683.3

Potential forests 34.6 36.2

Non−forests 1,034.8 1,092.7

Table 4.

Area of fishnets representing ‘forests', ‘potential forests' and ‘non−forests'

Fig. 5.

Classification results (two classes; based on hyperspectral data) 
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same accuracy for the classification of the two specific species groups. This may be the result 

of a better spatial resolution of the ALS data or the three−dimensional specificity of the analysis.

In the case of willow, it is possible that the spectral profile of willow and grey willow is similar

because they are closely related biologically but are relatively different morphologically. Since

the ALS data are at least half the cost of the hyperspectral data, do not have as many limitations

in acquisition when weather conditions are considered and provide similar results, they are more

efficient.

Sophisticated methods for estimating forest area include object segmentation and super−

vised classification (Pekkarinen et al., 2009; Szostak et al., 2017), but few of them consider the

geometric characteristics of forest vegetation – height (Kolecka et al., 2015; Thompson et al.,
2016) and canopy cover (Kolecka et al., 2015) – mentioned in the international forest definitions,

Class Hyperspectral data [%] ALS data [%]

Overall accuracy 92.5 90.0

Kappa 88.8 85.0

Forests Producer's accuracy – 100.0 Producer's accuracy – 100.0

User's accuracy – 95.2 User's accuracy – 100.0

Potential forests Producer's accuracy – 80.0 Producer's accuracy – 72.5

User's accuracy – 97.0 User's accuracy – 96.7

Non−forests Producer's accuracy – 97.5 Producer's accuracy – 97.5

User's accuracy – 86.7 User's accuracy – 78.0

Table 5.

Accuracy of the estimation of ‘forests', ‘potential forests' and ‘non−forests'

Fig. 6.

Map of ‘forests', ‘potential forests' and ‘non−forests' (based on hyperspectral data)
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with an overall accuracy of 95%. However, their partial values (1 m, 2−20% canopy cover) do not

match the values (5 m, 10%) given in the forest definitions formulated by the FAO/UN.

The methodology presented by Straub et al. (2008) was used to estimate the forest area.

For this purpose, the authors used a grid of squares with a defined fishnet area and divided the

area of forest vegetation (�5 m, �10%) by the area of the fishnet, obtaining an accuracy of 97.7%.

This approach is more methodologically correct than that proposed by Wang et al. (2008) and

has a lower degree of complexity (and thus workload) than the method presented by Eysn et al.
(2010, 2012). Hycza et al. (2021), when comparing these methods, reached the same conclusion.

The advantage of the presented method for estimating potential forest area is that it does

not depend that much on the type of dataset or spatial resolution, as long as it is possible to per−

form species classification. However, the larger the pixels or the lower the density of the ALS point

cloud, the lower the classification accuracy, which may lead to unacceptable generalisation.

Estimation of areas with forest vegetation has been addressed in numerous publications, but no

publications were found that estimate potential forest areas. However, the methodology based

on tree height (or potential height), canopy cover (or potential canopy cover) and area of the forest

complex (or potential forest) can be used to perform this type of analysis. Nevertheless, future

forest development is not a simple issue that can be easily projected through image classifica−

tion.

The height criterion was fully considered in this study. In estimating the forest area, not

only trees above the selected threshold were considered but also lower trees that have the

potential to reach the threshold and were identified based on information about their species,

obtained through species classification. We must, however, keep in mind that the same tree

species growing in different conditions reach different sizes, and therefore, local/regional con−

ditions must be taken into account when implementing the results of this work.

There is also the criterion of minimum canopy area (=10%), which was not fully consid−

ered in the study. We can identify individual trees and classify them according to their species,

but it is extremely difficult to estimate the canopy area that will be reached when the trees are

mature enough. Each species has its own characteristics, but the area and height of the tree

crown depend on competition, microclimate, soil, moisture and other site characteristics. For this

reason, we classified the nets according to the presence of potential woody vegetation without

attempting to estimate the future canopy area. However, this is not impossible if one has a suitable

database of average species canopy sizes corresponding to the various conditions at the study

site.

Conclusions

The accuracy of the classification based on ALS data was higher for individual species but sim−

ilar for the two groups of species (95.5%, Kappa coefficient 87.5%) compared to the accuracy of

the classification based on hyperspectral data 96% (Kappa coefficient 87.7%). A map of the for−

est and potential forest vegetation was created, showing the potential of remote sensing data for

predicting changes in forest area due to plant development. The proposed method allowed the

delineation of ‘forests’, ‘potential forests’ and ‘non−forests’ on the Białowieża Glade with an accu−

racy of 90%−92.5% (Kappa coefficient 85−88.8%).The estimation accuracy obtained for ‘forests’

and ‘potential forests’ was high but cannot be compared with other results since no relevant

studies were found.

The results presented in the study can support reports to the FAO/UN on forest area.

Estimation of potential forest area is important according to international definitions, taking
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into account land use and its future development, even without current forest vegetation. This,

in turn, is important in the context of reporting and estimating carbon stocks and biodiversity

to mitigate climate impacts.
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Streszczenie

Klasyfikacja gruntów „potencjalnie” leśnych na podstawie danych
teledetekcyjnych 

Niektóre definicje lasów są sformułowane w prawie poszczególnych krajów, inne mają charakter

międzynarodowy. Różnice w zapisach wynikają z odmiennych cech roślinności leśnej oraz róż−

nych form użytkowania gruntów i gospodarki leśnej (Putz i Redford, 2009). Polska zobowiązana 

jest do raportowania powierzchni gruntów leśnych do Organizacji ds. Wyżywienia i Rolnictwa

(FAO/ONZ) (Forest Resources Assessment, 2004, 2007, 2012). Grunty porolne z sukcesją wtórną

nie są w Polsce uznawane za lasy (ze względu na użytkowanie gruntu), w przeciwieństwie do

definicji FAO/UN (Jabłoński, 2015, Jabłoński i in., 2017) (tab. 1). Aby stwierdzić, czy dany grunt

stanie się gruntem leśnym w ciągu 5 lat, kluczowe jest określenie, jakie gatunki drzew tam wystę−

pują.

Celem badań jest określenie, który zestaw danych (zobrazowania hiperspektralne i dane z lot−

niczego skanowania laserowego) daje lepsze wyniki klasyfikacji na dwie grupy gatunków: te, które

osiągną 5 m wysokości i te, które takiej wysokości nie osiągną, a także opracowanie metodyki

mapowania powierzchni gruntów „potencjalnie” leśnych na przykładzie Polany Białowieskiej

(ryc. 1−2).

Do klasyfikacji zobrazowania hiperspektralnego i danych z chmury punktów z lotniczego

skanowania laserowego (tab. 2) wykorzystano algorytm Support Vector Machine (Vapnik, 1999).

Klasyfikację zdjęcia hiperspektralnego przeprowadzono dla 10 gatunków drzew (grab

Carpinus L., olcha Alnus Mill., dąb Quercus L., wierzba iwa Salix caprea L., topola Populus L.,

wierzba szara Salix cinerea L., głóg Crataegus L., brzoza Betula L., sosna Pinus L., świerk Picea A.
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Dietr.), 6 grup wyznaczonych na podstawie krzywych spektralnych (ryc. 3) (grab+olcha,

dąb+wierzba+topola, wierzba szara, głóg, brzoza, sosna+świerk). Wyniki drugiej klasyfikacji

zagregowano w 2 grupy gatunkowe (te, które osiągną wysokość 5 m i te, które takiej wysokości

nie osiągną). Klasyfikację chmury punktów z lotniczego skanowania laserowego przeprowa−

dzono dla 10 gatunków drzew i 2 grup gatunków.

Klasyfikacja danych ALS na 10 gatunków przyniosła lepsze wyniki (81,4%) niż klasyfikacja

ze zobrazowania hiperspektralnego (67,3%). Klasyfikacja zobrazowania hiperspektralnego na 

2 grupy gatunków okazała się natomiast minimalnie lepsza (96%) niż klasyfikacja danych ALS

(95%). Im mniejsza liczba klas, tym wyższa była dokładność klasyfikacji (tab. 3, ryc. 5).

Powierzchnia, dla której obliczane jest pokrycie przez korony, została sztucznie utworzona

poprzez podzielenie całego obszaru na siatkę kwadratów o powierzchni 0,01 ha (10×10 m) i po−

dzielenie powierzchni poligonów reprezentujących korony drzew o wysokości co najmniej 5 m

przez powierzchnię pola podstawowego (Straub i in., 2008) (ryc. 4). Na tej podstawie utworzono

kartogram, w którym poszczególne oczka siatki reprezentują grunty leśne, „potencjalnie” leśne

i nieleśne (ryc. 6).

Dokładność szacowania powierzchni gruntów leśnych, „potencjalnie” leśnych i nieleśnych

została przeprowadzona przy użyciu zestawu 120 punktów referencyjnych. Nieco lepsze wyniki

(92,5%) uzyskano w przypadku klasyfikacji danych hiperspektralnych niż danych ALS (90%).

W pierwszym przypadku dokładność producenta dla „lasów potencjalnych” wyniosła 80%, 

a użytkownika 97%. W drugim przypadku dokładność producenta wyniosła 72,5%, a użytkownika

96,7% (tab. 4−5).

Szacowanie powierzchni gruntów leśnych (w tym „potencjalnie” leśnych) jest ważne w kon−

tekście raportowania, szacowania zasobów węgla, monitorowania bioróżnorodności i łagodzenia

skutków zmian klimatu.


