PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 12 |

Tytuł artykułu

Physiological and biochemical responses of soybean to white mold affected by manganese phosphite and fluazinam

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
White mold, caused by Sclerotinia sclerotiorum, is one of the most important diseases affecting soybean and its control has been difficult to achieve. This study aimed to investigate the potential of manganese (Mn) phosphite and fluazinam in protecting soybean plants against S. sclerotiorum infection by examining the photosynthetic performance (leaf gas exchange and chlorophyll (Chl) a fluorescence parameters), activities of defense enzymes [chitinase (CHI), β-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), and polyphenol oxidase (PPO)] as well as those related to the antioxidant metabolism (superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and ascorbate peroxidase (APX)) and the concentrations of hydrogen peroxide (H₂O₂), superoxide (O₂⁻), and malondialdehyde (MDA). White mold development was completely inhibited by fluazinam. Soybean metabolism was not changed by fluazinam. White mold severity was significantly reduced on plants sprayed with Mn phosphite, which showed a better photosynthetic performance than the non-sprayed plants. Mycelial growth of S. sclerotiorum was inhibited by Mn phosphite. Activities of CAT, POX, and SOD decreased while CHI, GLU, and PAL activities increased at 96 hai for Mn phosphite-sprayed plants compared to non-sprayed plants. In conclusion, Mn phosphite affected white mold development and pathogen-induced physiological impairments in soybean leaflets due to its dual mode of action.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

12

Opis fizyczny

Article 186 [16p.], fig.,ref.

Twórcy

  • Laboratorio da Interacao Planta‑Patogeno, Departamento de Fitopatologia, Universidade Federal de Vicosa, Vicosa, Minas Gerais State 36570‑900, Brazil
autor
  • Laboratorio da Interacao Planta‑Patogeno, Departamento de Fitopatologia, Universidade Federal de Vicosa, Vicosa, Minas Gerais State 36570‑900, Brazil
  • Laboratorio da Interacao Planta‑Patogeno, Departamento de Fitopatologia, Universidade Federal de Vicosa, Vicosa, Minas Gerais State 36570‑900, Brazil
autor
  • Laboratorio da Interacao Planta‑Patogeno, Departamento de Fitopatologia, Universidade Federal de Vicosa, Vicosa, Minas Gerais State 36570‑900, Brazil
  • Laboratorio da Interacao Planta‑Patogeno, Departamento de Fitopatologia, Universidade Federal de Vicosa, Vicosa, Minas Gerais State 36570‑900, Brazil

Bibliografia

  • Araujo L, Valdebenito-Sanhueza RM, Stadnik MJ (2010) Avaliação de formulações de fosfito de potássio sobre Colletotrichum gloeosporioides in vitro e no controle pós-infeccional da mancha foliar de Glomerella em macieira. Trop Plant Pathol 35:54–59
  • Araujo L, Bispo WMS, Rios VS, Fernandes SA, Rodrigues FA (2015) Induction of the phenylpropanoid pathway by acibenzolar-S-methyl and potassium phosphite increases mango resistance to Ceratocystis fimbriata infection. Plant Dis 99:447–459
  • Bae YS, Knudsen GR (2007) Effect of sclerotial distribution pattern of Sclerotinia sclerotiorum on biocontrol efficacy of Trichoderma harzianum. Appl Soil Ecol 35:21–24
  • Bateman DF, Beer SV (1965) Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55:204–211
  • Bermúdez-Cardona MB, Wordell Filho JA, Rodrigues FA (2015) Leaf gas exchange and chlorophyll a fluorescence in maize leaves infected with Stenocarpella macrospora. Phytopathology 105:26–34
  • Bock CH, Brenneman TB, Hotchkiss MW, Wood BW (2013) Evaluation of a phosphite fungicide to control pecan scab in the southeastern USA. Crop Prot 36:58–64
  • Boland GJ, Hall R (1987) Evaluating soybeans cultivars for resistance to Sclerotinia sclerotiorum under field conditions. Plant Dis 71:934–936
  • Brackmann A, Giehl RFH, Sestari I, Steffens CA (2004) Fosfitos para o controle de podridões pós-colheita em maçãs ‘Fuji’ durante o armazenamento refrigerado. Cienc Rural 34:1039–1042
  • Bradford MN (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Bu JW, Yao G, Gao HY, Jia YJ, Zhang LT, Cheng DD, Wang X (2009) Inhibition mechanism of photosynthesis in cucumber leaves infected by Sclerotinia sclerotiorum (Lib.) de Bary. Acta Phytopathol Sinc 39:613–621
  • Cakmak I, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468
  • Carmona MA, Simonetti E, Ravotti ME, Scandiani MM, Luque AG, Formento NA, Sautua FJ (2017) In vitro antifungal/fungistatic activity of manganese phosphite against soybean soil-borne pathogens. Phyton Int J Exp Bot 85:265–269
  • Cerqueira A, Alves A, Berenguer H, Correia B, Gómez-Cadenas A, Diez JJ, Monteiro P, Pinto G (2017) Phosphite shifts physiological and hormonal profile of Monterey pine and delays Fusarium circinatum progression. Plant Physiol Biochem 114:88–99
  • Chaitanya KSK, Naithani SC (1994) Role of superoxide lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn.f. New Phytol 126:623–627
  • Christensen TH, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H₂O₂ in plants. H₂O₂ accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194
  • Clark RB (1975) Characterization of phosphates in intact maize roots. J Agric Food Chem 23:458–460
  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216
  • Costa BHG, Resende MLV, Monteiro ACA, Junior PMR, Botelho DMS, Silva BM (2018) Potassium phosphites in the protection of common bean plants against anthracnose and biochemical defence responses. J Phytopathol 166:95–102
  • Dalio RJD, Fleischmann F, Humez M, Oswald W (2014) Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PLoS One 9:e87860
  • Daniel R, Guest D (2006) Defense responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiol Mol Plant Pathol 67:194–201
  • Debona D, Rodrigues FA, Rios JA, Martins SC, Pereira LF, DaMatta FM (2014) Limitations to photosynthesis in leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 104:34–39
  • Debona D, Nascimento KJT, Gomes JGO, Aucique-Pérez CE, Rodrigues FA (2016) Physiological changes promoted by a strobilurin fungicide in the rice-Bipolaris oryzae interaction. Pest Biochem Physiol 10:8–16
  • Dianese AL, Blum LEB, Dutra JB, Lopes LF (2009) Aplicação de fosfito de potássio, cálcio ou magnésio para a redução da podridão-do-pé do mamoeiro em casa de vegetação. Cienc Rural 29:2309–2314
  • Doke N, Miura Y, Sanchez LM, Park HJ, Noritake T, Yoshioka H, Kawakita K (1996) The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant biodefence. Gene 179:45–51
  • Fagundes-Nacarath IRF, Debona D, Brás VV, Silveira PR, Rodrigues FA (2018) Phosphites attenuate Sclerotinia sclerotiorum-induced physiological impairments in common bean. Acta Physiol Plant 40:198
  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–931
  • Fortunato AA, Debona D, Bernadeli AMA, Rodrigues FA (2015a) Changes in the antioxidant system in soybean leaves infected by Corynespora cassiicola. Phytopathology 105:1050–1058
  • Fortunato AA, Debona D, Bernardeli AMA, Rodrigues FA (2015b) Defence-related enzymes in soybean resistance to target spot. J Phytopathol 163:731–742
  • Gay C, Gebicki JM (2000) A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem 284:217–220
  • Guimarães RL, Stotz HU (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136:3703–3711
  • Guo X, Stotz H (2010) ABA signaling inhibits oxalate-induced production of reactive oxygen species and protects against Sclerotinia sclerotiorum in Arabidopsis thaliana. Eur J Plant Pathol 128:7–19
  • Guo Z, Miyoshi H, Kimyoji T, Haga T, Fujita T (1991) Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine]. Biochim Biophys Acta Bioenerg 1056:89–92
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Heffer Link V, Johnson KB (2007) White mold: the plant health instructor. http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/WhiteMold.aspx. Accessed 9 June 2018
  • Hegedus DD, Rimmer SR (2005) Sclerotinia sclerotiorum: when to be or not to be a pathogen? FEMS Microbiol Lett 251:177–184
  • Kim HS, Diers BW (2014) Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop Sci 40:55–61
  • Klughammer C, Schreiber U (2008) Complementary PSII quantum yield calculated from simple fluorescence parameters measured by PAM fluorometry and saturation pulse method. PAM Appl Notes 1:27–35
  • Lehner MS, Paula Junior TJ, Silva RA, Vieira RF, Carneiro JES, Schnabel G, Mizubuti ESG (2015) Fungicide sensitivity of Sclerotinia sclerotiorum: a thorough assessment using discriminatory dose, EC₅₀, high-resolution melting analysis, and description of new point mutation associated with thiophanate-methyl resistance. Plant Dis 99:1537–1543
  • Lehner MS, Pethybridge SJ, Meyer MC, Del Ponte EM (2017) Meta-analytic modelling of the incidence-yield and incidence-sclerotial production relationships in soybean white mould epidemics. Plant Pathol 66:460–468
  • Lobato MC, Olivieri FP, Daleo GR, Andreu AB (2010) Antimicrobial activity of phosphites against different potato pathogens. J Plant Dis Protec 117:102–109
  • Machinandiarena MF, Lobato MC, Feldman ML, Daleo GR, Andreu AB (2012) Potassium phosphite primes defense responses in potato against Phytophthora infestans. J Plant Physiol 149:1417–1424
  • Malenčić DL, Kiprovski B, Popović M, Prvulović D, Miladinović J, Djordjević V (2010) Changes in antioxidant systems in soybean as affected by Sclerotinia sclerotiorum (Lib.) de Bary. Plant Physiol Biochem 48:903–908
  • Mandal S, Mitra A, Mallick N (2008) Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol 72:56–61
  • McCrearya CM, Depuydta D, Vynb RJ, Gillars CL (2016) Fungicide efficacy of dry bean white mold [Sclerotinia sclerotiorum(Lib.) de Bary, causal organism] and economic analysis at moderate to high disease pressure. Crop Prot 82:75–81
  • Meyer MC, Campos HD, Godoy CV, Utiamada CM (2014) Ensaios cooperativos de controle químico de mofo branco na cultura da soja: safras 2009 a 2012. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/985018/1/Ensaioscooperativosdecontrolequimicodemofobranconaculturadasojasafras2009a2012.pdf. Accessed 15 July 2018
  • Mueller DS, Dorrance AE, Derksen RC, Ozkan E, Kurle JE, Grau CR, Gaska JM, Hartman GL, Bradley CA, Pedersen WL (2002) Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybean. Plant Dis 86:26–31
  • Mueller DS, Bradley C, Chilvers M, Esker P, Malvick D, Peltier A, Sisson A, Wise K (2015) White mold: Soybean Disease Management. Crop Protection Network, 1005: [http://www.ncsrp.com/pdf_doc/WhiteMold_CPN1005_2015.pdf. Accessed 10 June 2018
  • Nascimento KJT, Araujo L, Resende RS, Schurt DA, Silva WL, Rodrigues FA (2016) Silicon, acibenzolar-S-methyl and potassium phosphite in the control of brown spot in rice. Bragantia 75:212–221
  • Nojosa GBA, Resende MLV, Barguil BM, Moraes SRG, Vilas Boas CH (2009) Efeito de indutores de resistência em cafeeiro contra a mancha de Phoma. Summa Phytopathol 35:60–62
  • Panicker S, Gangadharam K (1999) Controlling downy mildew of maize caused by Peronosclerospora sorghi by foliar sprays of phosphonic acid compounds. Crop Protec 18:115–118
  • Peruch LAM, Brunna ED (2008) Relação entre doses de calda bordalesa e de fosfito potássio na intensidade do míldio e na produtividade da videira cv. ‘Goethe’. Cienc Rural 38:2413–2418
  • Perveen K, Haseen A, Shukla PK (2010) Effect of Sclerotinia sclerotiorum on the disease development, growth, oil yield and biochemical changes in plants of Mentha arvensis. Saudi J Biol Sci 17:291–294
  • Pinto KMS, Nascimento LC, Gomes ECS, Silva HF, Miranda JR (2012) Efficiency of resistance elicitors in the management of grapevine downy mildew Plasmopara viticola: epidemiological, biochemical and economic aspects. Eur J Plant Pathol 134:745–754
  • Rios JA, Rios VS, Aucique-Pérez CE, Cruz MFA, Morais LE, DaMatta FM, Rodrigues FA (2017) The photosynthetic performance and source-sink relationships are altered on wheat plants infected by Pyricularia oryzae. Plant Pathol 66:1496–1507
  • Ryals J, Uknes S, Wars E (1994) Systemic acquired resistance. Plant Physiol 104:1109–1112
  • Simonetti E, Viso NP, Montecchia M, Zilli C, Balestrasse K, Carmona M (2015) Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean. Microbiol Res 180:40–48
  • Smillie R, Grant BR, Guest D (1989) The mode of action of phosphite: evidence for both direct and indirect modes of action on three Phytophthora spp. in plants. Phytopathology 79:921–926
  • Sumida CH, Canteri MG, Peitil DC, Tibolla F, Orsini IP, Araujo FA, Chagas DF, Calvos NS (2015) Chemical and biological control of Sclerotinia stem rot in the soybeans crop. Cienc Rural 45:760–766
  • Tariq VN, Jeffries P (1985) Changes occurring in chloroplasts of Phaseolus following infection by Sclerotinia: a cytochemical study. J Cell Sci 75:195–295
  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934
  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162
  • Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. Plos Pathog 7:e1002107
  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313
  • Xavier SA, Koga LJ, Barros DCM, Canteri MG, Lopes ION, Godoy CV (2015) Variação da sensibilidade de populações de Phakopsora pachyrhizi a fungicidas inibidores da desmetilação no Brasil. Summa Phytopathol 41:191–196
  • Yang XB, Lundeen P, Uphoff MD (1999) Soybean varietal response and yield loss caused by Sclerotinia sclerotiorum. Plant Dis 83:456–461
  • Yang C, Zhang Z, Gao H, Liu M, Fan X (2014) Mechanisms by which the infection of Sclerotinia sclerotiorum (Lib.) de Bary affects the photosynthetic performance in tobacco leaves. BMC Plant Biol 14:1–11
  • Zhou J, Sun A, Xing D (2013) Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. J Exp Bot 64:3261–3272

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-97cf2953-0902-4935-93e6-94f6aa13f542
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.