PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 3 |

Tytuł artykułu

High concentration of cadmium induces AtPCS2 gene expression in Arabidopsis thaliana (L.) Heynh ecotype Wassilewskija seedlings

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In Arabidopsis thaliana, two genes encoding phytochelatin synthase (PCS; EC 2.3.2.15), AtPCS1 and AtPCS2, have been identified. Until now, only AtPCS1 was shown to play a role in response to Cd. To gain insight into the putative role of AtPCS2, three Cd concentrations (50, 100 and 200 µM) and long-term exposure (7 days) were tested on 1-week-old A. thaliana ecotype Wassilewskija (Ws) seedlings. Since 100 µM Cd did not alter seedling metabolism, as shown by unchanged total soluble protein and free proline contents, we investigated plantlet response to this concentration in addition to Cd accumulation. Seedlings accumulated Cd in roots and shoots. As phytochelatins and glutathione (GSH) contents increased in treated seedlings, we suggested that Cd might be translocated via the phytochelatin pathway. Specific enzymatic activities of γ-glutamylcysteine synthetase (GCS; EC 6.3.2.2), glutathione synthetase (GS; EC 6.3.2.3) and PCS were twice much more stimulated in shoots and roots after Cd exposure except GS that remained constant in shoots. As expression of genes encoding GCS and GS was unchanged in response to Cd, we suggested a regulation at translational or post-translational level. Surprisingly, AtPCS1 and AtPCS2 were differentially up-regulated after Cd treatment: AtPCS1 in shoots and AtPCS2 in whole plantlets. This last result suggests that PCS2 could be involved in plant response to high concentration of Cd in Ws ecotype and supports a putative role of PCS2, not redundant with PCS1, in a long-term response to Cd.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

3

Opis fizyczny

p.1083-1091,fig.,ref.

Twórcy

  • Laboratorie de Chimie des Substances Naturelles (EA 1069), Faculte des Siences et Techniques, Universite de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
autor
  • Laboratorie de Chimie des Substances Naturelles (EA 1069), Faculte des Siences et Techniques, Universite de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
autor
  • Laboratorie de Chimie des Substances Naturelles (EA 1069), Faculte des Siences et Techniques, Universite de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
autor
  • Unite de Genetique Moleculaire et Animale (UMR INRA 1061), Faculte des Sciences et Techniques, Universite de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
autor
  • Laboratorie de Chimie des Substances Naturelles (EA 1069), Faculte des Siences et Techniques, Universite de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, France

Bibliografia

  • Blum R, Meyer KC, Wünschmann J, Lendzian KJ, Grill E (2010) Cytosolic action of phytochelatin synthase. Plant Physiol 153:159–169
  • Cazalé AC, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507:215–219
  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120
  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101
  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332
  • Clemens S, Peršoh D (2009) Multi-tasking phytochelatin synthases. Plant Sci 177:266–271
  • Dixon DP, Skipsey M, Edwards R (2010) Roles of glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350
  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158
  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118–10123
  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765
  • Herschbach C, Jouanin L, Rennenberg H (1998) Overexpression of glutamylcysteine synthetase, but not glutathione synthetase, elevates glutathione allocation in the phloem of transgenic poplar trees. Plant Cell Physiol 39:447–451
  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066
  • Inhoue M (2005) Phytochelatins. Braz J Plant Physiol 17:65–78
  • Jez JM, Cahoon RE (2004) Kinetic mechanism of glutathione synthetase from Arabidopsis thaliana. J Biol Chem 279: 42726–42731
  • Jez JM, Cahoon RE, Chen S (2004) Arabidopsis thaliana glutamatecysteine ligase. J Biol Chem 279:33463–33470
  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802
  • Köstner B, Schupp R, Schulze ED, Rennenberg H (1998) Organic and inorganic sulfur transport in the xylem sap and the sulfur budget of Picea abies trees. Tree Physiol 18:1–9
  • Lee S, Kang BS (2005) Expression of Arabidopsis phytochelatin synthase 2 is too low to complement an AtPCS1-defective Cad1–3 mutant. Mol Cells 19:81–87
  • Lee S, Korban SS (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta 215:689–693
  • Lee S, Moon JS, Domier LL, Korban SS (2002) Molecular characterization of phytochelatin synthase expression in transgenic Arabidopsis. Plant Physiol Biochem 40:727–733
  • Martin MN, Slovin JP (2000) Purified γ-glutamyl transpeptidases from tomato exhibit high affinity for glutathione and glutathione S-conjugates. Plant Physiol 122:1417–1426
  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259
  • Miura K, Hasegawa PM (2010) Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 20:223–232
  • Ogawa S, Yoshidomi T, Yoshimura E (2011) Cadmium(II)-stimulated enzyme activation of Arabidopsis thaliana phytochelatin synthase 1. J Inorg Biochem 105:111–117
  • Passardi F, Dobias J, Valério L, Guimil S, Penel C, Dunand C (2007) Morphological and physiological traits of three major Arabidopsis thaliana accessions. J Plant Physiol 164:980–992
  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118
  • Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349
  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198
  • Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, Van Belleghem F, Smeets K, Vangronsveld J (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167: 247–254
  • Su T, Xu J, Leil L, Zhao L, Yang H, Feng J, Liu G, Ren D (2011) Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plan Cell 23:364–380
  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97
  • Vestergaard M, Matsumoto S, Nishikori S, Shiraki K, Hirata K, Tagaki M (2008) Chelation of cadmium ions by phytochelatin synthase: role of the cystein-rich C-terminal. Anal Sci 24: 227–281
  • Wang HC, Wu JS, Chia JC, Yang CC, Wu YJ, Juang RH (2009) Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. J Agric Food Chem 57:7348–7355
  • Xi DM, Liu WS, Yang GD, Wu CA, Zheng CC (2010) Seed-specific overexpression of antioxidant genes in Arabidopsis enhances oxidative stress tolerance during germination and early seedling growth. Plant Biotech J 8:796–806
  • Zeng X, Ma LQ, Qiu R, Tang Y (2009) Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ Exp Bot 66:242–248

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-974ccd81-32d7-4227-9599-4a2afd03453e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.