PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |

Tytuł artykułu

Applying response surface methodology to optimize the treatment of swine slaughterhouse wastewater by electrocoagulation

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of electrocoagulation on COD removal of Nam Phong swine slaughterhouse wastewater (Binh Thanh District, Ho Chi Minh City, Vietnam) were investigated in this paper. For this purpose, response surface methodology (RSM) was employed to investigate the effects of three operating conditions on COD removal by electrocoagulation (EC) with iron electrodes. A central composite design (CCD) was used to optimize the EC process and to evaluate the individual and interaction effects of current density, electrolysis time, and initial pH. The results, based on statistical analysis, showed that the quadratic models for COD removal efficiency were significant at very low probability value (<0.0001) and high coefficient of determination (R² = 0.9754). Optimal conditions for COD removal were established at 130 A/m² current density, 9.5 min electrolysis time, and initial pH 8.5, in which a removal of 97.3% was achieved. Operating costs and sludge production at the optimum operating conditions were also calculated for the treatment process.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

5

Opis fizyczny

p.1975-1981,fig.,ref.

Twórcy

autor
  • Department of Environmental Sciences, Saigon University, Ho Chi Minh City, Vietnam

Bibliografia

  • 1. NHAT P.H. Environmental performance improvement for small and medium-sized slaughterhouses in Vietnam. Environ. Dev. Sustain. 8 (2), 251, 2006.
  • 2. IKEHATA K., JODEIRI NAGHASHKAR N., GAMAL EL-DIN M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone. Sci. Eng. 28 (6), 353, 2006.
  • 3. NACHEVA P., PANTOJA M., SERRANO E. Treatment of slaughterhouse wastewater in upflow anaerobic sludge blanket reactor. Water Sci. Technol. 63 (5), 878, 2011.
  • 4. RAJAKUMAR R., MEENAMBAL T., BANU J.R., YEOM I.T. Treatment of poultry slaughterhouse wastewater in upflow anaerobic filter under low upflow velocity. Int. J. Environ. Sci. Technol. 8 (1), 149, 2011.
  • 5. DEL POZO R., DIEZ V., SALAZAR G., ESPINOSA J.J. The influence of influent distribution and blood content of slaughterhouse wastewater on the performance of an anaerobic fixed-film reactor. J. Chem. Technol. Biotechnol. 81 (3), 282, 2006.
  • 6. QIAO W., TAKAYANAGI K., SHOFIE M., NIU Q., YU H. Q., LI Y. Y. Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as cosubstrate using a submerged AnMBR: System amendments and membrane performance. Bioresour. Technol. 150 (0), 249, 2013.
  • 7. MILLAMENA O.M. Ozone treatment of slaughterhouse and laboratory wastewaters. Aquacult. Eng. 11 (1), 23, 1992.
  • 8. WU J., DOAN H. Disinfection of recycled red-meat-processing wastewater by ozone. J. Chem. Technol. Biotechnol. 80 (7), 828, 2005.
  • 9. LUIZ D.B., GENENA A.K., JOSÉ H.J., MOREIRA R., SCHRÖDER H.F. Tertiary treatment of slaughterhouse effluent: degradation kinetics applying UV radiation or H₂O₂/UV. Water Sci. Technol. 60 (7), 1869, 2009.
  • 10. BUSTILLO-LECOMPTE C.F., GHAFOORI S., MEHRVAR M. Photochemical degradation of an actual slaughterhouse wastewater by continuous UV/H₂O₂ photoreactor with recycle. J. Environ. Chem. Eng. 4 (1), 719, 2016.
  • 11. HA M.B., XUYEN T.H.L. Removal of chemical oxygen demand from hospital wastewater using electrocoagulation. Mor. J. Chem. 5 (2), 371, 2017.
  • 12. AITBARA A., CHERIFI M., HAZOURLI S., LECLERC J. P. Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes. Desalin. Water Treat. 57 (8), 3395, 2016.
  • 13. HA M.B. Modeling the removal of Sunfix Red S3B from aqueous solution by electrocoagulation process using artificial neural network. J. Serb. Chem. Soc. 81 (8), 959, 2016.
  • 14. HA M.B., LOAN N.T.H., HAN C.T.L., KHUYEN T.N. The application of electro coagulation process for decolorization of reactive dyeing wastewater. Mor. J. Chem. 5 (2), 297, 2017.
  • 15. ABDEL S.G.A., BARAKA A.M., OMRAN K.A., MOKHTAR M.M. Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. 7 (8), 6654, 2012.
  • 16. BENINCÁ C., VARGAS F.T., MARTINS M.L., GONÇALVES F.F., VARGAS R.P., FREIRE F.B., ZANOELO E.F. Removal of clomazone herbicide from a synthetic effluent by electrocoagulation. Water Sci. Technol. 73 (1), 2944, 2016.
  • 17. MOLLAH M.Y.A., MORKOVSKY P., GOMES J.A.G., KESMEZ M., PARGA J., COCKE D.L. Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 114 (1-3), 199, 2004.
  • 18. CLESCERL L.S., GREENBERG A.E., EATON A.D. Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association: Washington DC, United States, 1000, 1999.
  • 19. ISA M.H. Simulated textile dye wastewater treatment by electrochemical oxidation: application of response surface methodology (RSM). Desalin. Water Treat. 53 (8), 2260, 2015.
  • 20. MONTGOMERY D.C. Design and Analysis of Experiments. 8th ed., John Wiley & Sons: Massachusetts, United States, 478, 2012.
  • 21. MAHTAB A., TARIQ M., SHAFIQ T., NASIR A. Coagulation/adsorption combined treatment of slaughterhouse wastewater. Desalin. Water Treat. 12 (1-3), 270, 2009.
  • 22. BARRERA-DÍAZ C., PALOMAR-PARDAVÉ M., ROMERO-ROMO M., MARTINEZ S. Chemical and electrochemical considerations on the removal process of hexavalent chromium from aqueous media. J. Appl. Electrochem. 33 (1), 61, 2003.
  • 23. GENGEC E., KOBYA M., DEMIRBAS E., AKYOL A., OKTOR K. Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination. 286 (0), 200, 2012.
  • 24. AKYOL A. Treatment of paint manufacturing wastewater by electrocoagulation. Desalination. 285 (0), 91, 2012.
  • 25. OZYONAR F., KARAGOZOGLU B. Operating cost analysis and treatment of domestic wastewater by electrocoagulation using aluminum electrodes. Pol. J. Environ. Stud. 20 (1), 173, 2011.
  • 26. DANESHVAR N., OLADEGARAGOZE A., DJAFARZADEH N. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. J. Hazard. Mater. 129 (1-3), 116, 2006.
  • 27. MOUSSA D.T., EL-NAAS M.H., NASSER M., AL-MARRI M.J. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manage. 186, 24, 2017.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-95309b75-dab4-49c3-b9d7-dd9bff0a7e09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.