PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 72 | 1 |

Tytuł artykułu

Assessing changes in pial artery resistance and subarachnoid space width using a non-invasive method in healthy humans during the handgrip test

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to assess the influence of the handgrip test (HGT) on: (1) pial artery pulsation (cc-TQ), (2) subarachnoid space (SAS) width (sas-TQ) and (3) the relationship between peripheral blood pressure (BP), heart rate (HR), cerebral blood flow velocity (CBFV), resistive index (RI), cc-TQ and sas-TQ. The study was performed on 29 healthy volunteers (11 men and 18 women) with a mean age of 29.3 ± SE 4.0. HGT was performed in the sitting position at 30% of maximal voluntary contraction. cc-TQ and sas-TQ were registered using near-infrared transillumination/backscattering sounding (NIR-T/BSS); BP and heart rate (HR) were measured using a Finapres monitor. CBFV and RI were recorded using a transcranial Doppler. A significant reduction in cc-TQ (-34.3%, P<0.0001) and sas-TQ (-12.9%, P<0.001) were observed, while mean arterial pressure and HR increased (+34.8%, P<0.0001 and +7.9%, P<0.0001, respectively). There was no significant change in CBFV (+1.0%) while RI increased (+12.0%, P<0.05). Correlation and regression analysis did not reveal any interdependencies between the investigated variables. HGT evoked a significant increase in pial artery resistance, with a simultaneous decrease in the width of the SAS. A decrease in pial artery compliance should be seen as protective mechanism against acute BP elevation, most likely mediated by sympathetic activation. NIR-T/BSS recordings allowed for non-invasive assessments of changes in pial artery compliance, and were consistent with data from the literature and physiological knowledge.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

72

Numer

1

Opis fizyczny

p.80-88,fig.,ref.

Twórcy

  • Institute of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
  • Institute of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
  • Institute of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland

Bibliografia

  • Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in human. Stroke 20: 45-52.
  • Ainslie PN, Ashmead JC, Ide K, Morgan BJ, Poulin MJ (2005) Diferential responses to CO2 and sympathetic stimulation in the cerebral and femoral circulations in humans. J Physiol 566: 613-624.
  • Bhambhani Y, Maikala R, Farag M, Rowland G (2006) Reliability of near-infrared spectroscopy measures of cerebral oxygenation and blood volume during handgrip exercise in nondisabled and traumatic brain-injured sub¬jects. J Rehabil Res Dev 43: 845-856. Boyajian RA, Otis SM (2000) Acute effects of smoking on human cerebral blood flow: a transcranial Doppler ultra- sonography study. J Neuroimaging 10: 204-208.
  • Brown WR, Moody DM, Thore CR, Anstrom JA, Challa VR (2009) Microvascular changes in the white mater in dementia. J Neurol Sci 283: 28-31.
  • Cassaglia PA, Griffiths RI, Walker AM (2008) Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. Am J Physiol Regul Integr Comp Physiol 294: R1255-1261.
  • Cassaglia PA, Griffiths RI, Walker AM (2009) Cerebral sympathetic nerve activity has a major regulatory role in the cerebral circulation in REM sleep. J Appl Physiol 106: 1050-1056.
  • Delp MD, Armstrong RB, Godfrey DA, Laughlin MH, Ross CD, Wilkerson MK (2001) Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine. J Physiol 533: 849-859.
  • Edvinsson L, Owman C, Sjoberg NO (1976) Autonomic nerves, mast cells, and amine receptors in human brain vessels. A histochemical and pharmacological study. Brain 115: 377-393.
  • Frydrychowski AF, Rojewski M, Guminski W, Kaczmarek J, Juzwa W (2001) Near infrared transillumination-back scattering (NIRT-BS) - a new method for non-invasive monitoring of changes in width of subarachnoid space and magnitude of cerebrovascular pulsation. Opto- Electron Rev 9: 397-402.
  • Frydrychowski AF, Rojewski M, Guminski W, Kaczmarek J, Juzwa W (2002) Technical foundation for non-invasive assessment of changes in the width of the subarachnoid space with near-infrared transillumination-back scatter¬ing sounding (NIR-TBSS). IEEE Trans Biomed Eng 49: 887-904.
  • Frydrychowski AF, Pluciński J (2007) New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination-backscattering sounding, part 2: clinical verification in the patient. J Biomed Opt 12: 044016.
  • Frydrychowski AF, Pankiewicz P, Sowiński P, Krzyzowski J (2009) Cerebrovascular pulsation and width of subarachnoid space during electroconvulsive therapy. J ECT 25: 99-105.
  • Frydrychowski AF, Wszedybyl-Winklewska M, Guminski W, Przyborska A, Kaczmarek J, Winklewski PJ (2011a) Use of Near Infrared Transillumination / Back Scattering Sounding (NIR-T/BSS) to assess effects of elevated intracranial pressure on width of subarachnoid space and cerebrovascular pulsation in animals. Acta Neurobiol Exp (Wars) 71: 313-321.
  • Frydrychowski AF, Wszedybyl-Winklewska M, Bandurski T, Winklewski PJ (2011b) Flow-induced changes in pial artery compliance registered with a non-invasive method in rabbits. Microvasc Res 82: 156-162.
  • Frydrychowski AF, Wszedybyl-Winklewska M, Guminski W, Lass P, Bandurski T, Winklewski PJ (2011c) Effects of acute hypercapnia on the amplitude of cerebrovascular pulsation in humans registered with a non-invasive method. Microvasc Res 83: 229-236.
  • Heistad DD, Marcus ML (1979) Effect of sympathetic stimulation on permeability of the blood-brain barrier to albumin during acute hypertension in cats. Circ Res 45: 331-338.
  • Ikemura T, Someya N, Hayashi N (2012) Autoregulation in the ocular and cerebral arteries during the cold pressor test and handgrip exercise. Eur J Appl Physiol 12: 641-646.
  • Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr (1978) Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 234: H371-383.
  • Kubota K, Yamaguchi T, Abe Y, Fujiwara T, Hatazawa J, Matsuzawa T (1983) Effects of smoking on regional cere¬bral blood flow in neurologically normal subjects. Stroke 14: 720-724.
  • Lassen NA (1959) Cerebral blood flow and oxygen con¬sumption in man. Physiol Rev 39: 183-238.
  • Levasseur JE, Wei EP, Raper AJ, Kontos AA, Patterson JL (1975) Detailed description of a cranial window technique for acute and chronic experiments. Stroke 6: 308-317.
  • Li Z, Wang Y, Li Y, Wang Y, Li J, Zhang L (2010) Wavelet analysis of cerebral oxygenation signal measured by near infrared spectroscopy in subjects with cerebral infarction. Microvasc Res 80: 142-147.
  • Li Z, Zhang M, Wang Y, Wang Y, Xin Q, Li J, Lu C (2011) Wavelet analysis of sacral tissue oxygenation oscillations by near-infrared spectroscopy in persons with spinal cord injury. Microvasc Res 81: 81-87.
  • Lucas SJ, Tzeng YC, Galvin SD, Thomas KN, Ogoh S, Ainslie PN (2010) Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension 55: 698-705.
  • Maier SE, Hardy CJ, Jolesz FA (1994) Brain and cerebrospinal fluid motion: real-time quantification with M-mode MR imaging. Radiology 193: 477-483.
  • Nation DA, Hong S, Jak AJ, Delano-Wood L, Mills PJ, Bondi MW, Dimsdale JE. (2011) Stress, exercise, and Alzheimer's disease: a neurovascular pathway. Med Hypotheses 76: 847-854.
  • Ogoh S, Tzeng YC, Lucas SJ, Galvin SD, Ainslie PN (2010a) Influence of baroreflex-mediated tachycardia on the regulation of dynamic cerebral perfusion during acute hypotension in humans. J Physiol 588: 365-371.
  • Ogoh S, Sato K, Akimoto T, Oue A, Hirasawa A, Sadamoto T (2010b) Dynamic cerebral autoregulation during and after handgrip exercise in humans. J Appl Physiol 108: 1701-1705.
  • Ogoh S, Sato K, Fisher JP, Seifert T, Overgaard M, Secher NH (2011) The effect of phenylephrine on arterial and venous cerebral blood flow in healthy subjects. Clin Physiol Funct Imaging 31: 445-451.
  • Plucinski J, Frydrychowski AF, Kaczmarek J, Juzwa W (2000) Theoretical foundations for non-invasive mea¬surement of variations in the width of the subarachnoid space. J Biomed Opt 5: 291-299.
  • Plucinski J, Frydrychowski AF (2007) New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination/backscattering sounding, part 1: Monte Carlo numerical modeling. J Biomed Opt 12: 044015.
  • Rasmussen P, Plomgaard P, Krogh-Madsen R, Kim YS, van Lieshout JJ, Secher NH, Quistorff B (2006) MCA Vmean and the arterial lactate-to-pyruvate ratio corre¬late during rhythmic handgrip. J Appl Physiol 101: 1406-1411.
  • Rogers RL, Meyer JS, Shaw TG, Mortel KF, Hardenberg JP, Zaid RR (1983) Cigarette smoking decreases cerebral blood flow suggesting increased risk for stroke. JAMA 250: 2796-2800.
  • Sato K, Sadamoto T (2010) Different blood flow responses to dynamic exercise between internal carotid and verte¬bral arteries in women. J Appl Physiol 109: 864-869.
  • Si ML, Lee TJ (2002) Alpha7-nicotinic acetylcholine recep¬tors on cerebral perivascular sympathetic nerves mediate choline-induced nitrergic neurogenic vasodilation. Circ Res 91: 62-69.
  • Silvestrini M, Troisi E, Matteis M, Cupini LM, Bernardi G (1996) Effect of smoking on cerebrovascular reactivity. J Cereb Blood Flow Metab 16: 746-749.
  • Sohn YH (1998) Cerebral hemodynamic changes induced by sympathetic stimulation tests. Yonsei Med J 39: 322¬327.
  • Terborg C, Birkner T, Schack B, Witte OW (2002) Acute effects of cigarette smoking on cerebral oxygenation and hemodynamics: a combined study with near-infrared spectroscopy and transcranial Doppler sonography. J Neurol Sci 205: 71-75.
  • Traystman RJ, Rapela CE (1975) Effect of sympathetic nerve stimulation on cerebral and cephalic blood flow in dogs. Circ Res 36: 620-630.
  • Tzeng YC, Lucas SJ, Atkinson G, Willie CK, Ainslie PN (2010) Fundamental relationships between arterial baroreflex sensitivity and dynamic cerebral autoregulation in humans. J Appl Physiol 108: 1162-1168.
  • Ulrich K, Kuschinsky W (1985) In vivo effects of alpha- adrenoceptor agonists and antagonists on pial veins of cats. Stroke 16: 880-884.
  • Wilson TD, Shoemaker JK, Kozak R, Lee TY, Gelb AW (2005) Reflex-mediated reduction in human cerebral blood volume. J Cereb Blood Flow Metab 25: 136-143.
  • Wagner BP, Gertsch S, Ammann RA, Pfenninger J (2003) Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow. Intensive Care Med 29: 196-200.
  • Wszedybyl-Winklewska M, Frydrychowski AF, Michalska BM, Winklewski PJ (2011) Effects of the Valsalva maneuver on pial artery pulsation and suba¬rachnoid width in healthy adults. Microvasc Res 82: 369-373.
  • Zhang R, Zuckerman JH, Levine BD (1998) Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain. J Appl Physiol 85: 1113— 1122.
  • Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106: 1814-1820.
  • Zhang R, Behbehani K, Levine BD (2009) Dynamic pressure- flow relationship of the cerebral circulation during acute increase in arterial pressure. J Physiol 587: 2567-2577.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9213c755-fb37-4eb0-b792-2e9e142cd31e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.