PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 06 |

Tytuł artykułu

Changes in leaf epicuticular wax, gas exchange and biochemistry metabolism between Jatropha mollissima and Jatropha curcas under semi-arid conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Jatropha curcas and Jatropha mollissima plants were evaluated under conditions of high (HSM) and low (LSM) soil moisture in a semi-arid environment, as changes in the content and concentration of epicuticular wax and the leaf metabolism which could have a relationship with drought tolerance. Besides epicuticular wax, gas exchange, antioxidant system and biochemical parameters of the photosynthetic metabolism were measured. The epicuticular wax content increased only in J. mollissima leaves 95 % under LSM, when compared with HSM conditions. Therefore, J. curcas invested less in the production of long-chain n-alkanes than did J. mollissima under LSM conditions. J. mollissima plants showed the highest CO2 assimilation rate during the HSM period compared to J. curcas. Both species showed high stability in some leaf biochemistry products, highlighting the highest sugar content, free amino acids, total soluble protein, and photosynthetic pigments in the leaves of J. mollissima plants under both of the soil moisture conditions. Moreover, the stability and performance of the different parameters, such as morphologic variables, seem to allow J. mollissima plants to tolerate semi-arid conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

06

Opis fizyczny

fig.,ref.

Twórcy

  • Departamento de Botanica, Centro de Ciencias Biologicas, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
  • Departamento de Botanica, Centro de Ciencias Biologicas, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
  • Departamento de Botanica, Centro de Ciencias Biologicas, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
autor
  • Departamento de Botanica, Centro de Ciencias Biologicas, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
autor
  • Departamento de Botanica, Centro de Ciencias Biologicas, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil

Bibliografia

  • Achten WMJ, Maes WH, Aerts R, Verchot L, Trabucco A, Mathijs E, Singh VP, Muys B (2010) Jatropha: from global hype to local opportunity. J Arid Environ 74:164–165. doi:10.1016/j.jaridenv. 2009.08.010
  • Adachi S, Nakae T, Uchida M, Soda K, Takai T, Oi T, Yamamoto T, Ookawa T, Miyake H, Yano M, Hirasawa T (2013) The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. J Exp Bot 64:1061–1072. doi:10.1093/jxb/ers382
  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. doi:10.1046/j. 1365-3040.2001.00778.x
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x
  • Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40:3031–3035. doi:10.1002/grl.50563
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017
  • Everson CS, Mengistu MG, Gush MB (2013) A field assessment of the agronomic performance and water use of Jatropha curcas in South Africa. Biomass Bioenergy 59:59–69. doi:10.1016/j. biombioe.2012.03.013
  • Fairless D (2007) Biofuel: the little shrub that could-maybe. Nature 449:652–655. doi:10.1038/449652a
  • Fan X-X, Xu Z-G, Liu X-Y, Tang C-M, Wang L-W, Han X-L (2013) Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50–55. doi:10.1016/j.scienta.2013.01.017
  • Farrar J, Pollock C, Gallagher J (2000) Sucrose and the integration of metabolism in vascular plants. Plant Sci 154:1–11. doi:10.1016/S0168-9452(99)00260-5
  • Figueiredo KV, Oliveira MT, Oliveira AFM, Silva GC, Santos MG (2012) Epicuticular-wax removal influences gas exchange and water relations in the leaves of an exotic and native species froma Brazilian semi-arid region under induced drought stress. Aust J Bot 60:685–692. doi:10.1071/BT12168
  • Fini A, Bellasio C, Pollastri S, Tattini M, Ferrini F (2013) Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J Arid Environ 89:21–29. doi:10.1016/j.jaridenv.2012.10.009
  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100. doi:10.1104/pp.110.166181
  • Franklin GL (1945) Preparation of thin sections of synthetic resins and wood-resins composites, and a new macerating method for wood. Nature 155:51. doi:10.1038/155051a0
  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314. doi:10.1104/pp.59.2.309
  • Guerfel M, Baccouri O, Boujnah D, Chaibi W, Zarrouk M (2009) Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci Hortic 119:257–263. doi:10.1016/j.scienta.2008.08.006
  • Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776. doi:10.1007/BF02703574
  • Havir E, McHale N (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455. doi:10.1104/pp.84.2.450
  • Johansen D (1940) Plant microtechnique. McGraw-Hill Book Company, New York
  • Karaj S, Müller J (2014) Effect of container depth and sedimentation time on quality of Jatropha curcas L. oil. Fuel 118:206–213. doi:10.1016/j.fuel.2013.10.066
  • Kerstiens G (1996) Signalling across the divide: a wider perspective of cuticular structure–function relationships. Trends Plant Sci 1:125–129. doi:10.1016/S1360-1385(96)90007-2
  • Lichthenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, San Diego, pp 350–382
  • Maes WH, Achten WMJ, Reubens B, Raes D, Samson R, Muys B (2009) Plant–water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J Arid Environ 73:877–884. doi:10.1016/j.jaridenv.2009.04.013
  • Mayworm MAS, Nascimento AS, Salatino A (1998) Seeds of species from the ‘caatinga’: proteins, oils and fatty acid contents. Br J Bot 21:299–303. doi:10.1590/S0100-84041998000300009
  • Moore S, Stein WH (1948) Photometric ninhydrin method for use in chromatography of amino acids. J Biol Chem 176:367–388
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Ong HC, Silitonga AS, Masjuki HH, Mahlia TMI, Chong WT, Boosroh MH (2013) Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra. Energ Convers Manag 73:245–255. doi:10.1016/j.enconman.2013.04.011
  • Pecina-Quintero V, Anaya-López JL, Zamarripa-Colmenero A, Núñez-Colín CA, Montes-García N, Solís-Bonilla JL, Jiménez-Becerril MF (2014) Genetic structure of Jatropha curcas L. in Mexico and probable centre of origin. Biomass Bioenergy 60:147–155. doi:10.1016/j.biombioe.2013.11.005
  • Pompelli MF, Barata-Luís R, Vitorino HS, Gonc¸alves ER, Rolim EV, Santos MG, Almeida-Cortez JS, Ferreira VM, Lemos EE, Endres L (2010) Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass Bioenergy 34:1207–1215. doi:10.1016/j.biombioe.2010.03.011
  • Riederer M (2006) Introduction: biology of the plant cuticle. In: Müller MC, Riederer M (eds) Biology of the plant cuticle, Annual Plant Reviews. Blackwell Publishing, Oxford, pp 1–10
  • Santos CM, Verissimo V, Wanderley Filho HCL, Ferreira VM, Cavalcante PGS, Rolim EV, Endres L (2013) Seasonal variations of photosynthesis, gas exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semi-humid and semi-arid areas subject to water stress. Ind Crops Prod 41:203–213. doi:10.1016/j.indcrop.2012.04.003
  • Santos MG, Oliveira MT, Figueiredo KV, Falcão HM, Arruda ECP, Almeida-Cortez J, Sampaio EVSB, Ometto JPHB, Menezes RSC, Oliveira AFM, Pompelli MF, Antonino ACD (2014) Caatinga, the Brazilian dry tropical forest: can it tolerate climatechanges? Theor Exp Plant Physiol 26:83–99. doi:10.1007/s40626-014-0008-0
  • Sapeta H, Costa JM, Lourenc¸o T, Maroco J, Linde PVD, Oliveira MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84. doi:10.1016/j. envexpbot.2012.08.012
  • Silva EN, Silveira JAG, Ribeiro RV, Vieira AS (2015) Photoprotective function of energy dissipation by thermal processes and photorespiratory mechanisms in Jatropha curcas plants during different intensities of drought and after recovery. Env Exp Bot 110:36–45. doi:10.1016/j.envexpbot.2014.09.008
  • Silveira M (1989) Preparo de amostras biológicas para microscopia eletrônica de varredura. In: Souza W (ed) Manual sobre técnicas básicas em microscopia eletrônica. Sociedade Brasileira de Microscopia Eletrônica, Rio de Janeiro, pp 71–79
  • Souza BD, Rodrigues BM, Meiado MV, Santos MG (2010) Water relations and chlorophyll fluorescence responses of two leguminous trees from the Caatinga to different watering regimes. Acta Physiol Plant 32:235–244. doi:10.1007/s11738-009-0394-0
  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18. doi:10.1093/jxb/ern297
  • Yang J, Ordiz MI, Jaworski JG, Beachy RN (2011) Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Plant Physiol Bioch 49:1448–1455. doi:10.1016/j.plaphy.2011.09.006
  • Yoo CY, Pence HE, Jin JB, Miura K, Gosney MJ, Hasegawa PM, Mickelbart MV (2010) The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell 22:4128–4141. doi:10.1105/tpc.110.078691

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-91e6963b-031b-442f-8f83-4d5b50b8c8cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.