PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

CO2 emissions in China’s Yangtze River Economic Zone: a dynamic vector autoregression approach

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
China has become the world’s largest carbon emitter, and coal consumption in the Yangtze River Economic Zone takes over more than one third of the total number in the country. Investigating the main influencing factors of the Yangtze River Economic Zone’s CO₂ emissions is of vital importance to develop effective environmental policies. The vector autoregression model was applied in the present paper to analyze the driving forces in this area based on the pertinent data from 1985 to 2014. Results show that energy efficiency is the primary influencing factor of the region’s carbon emissions, which plays a leading role in mitigating CO₂ emissions. Energy structure has an obviously positive impact on the zone’s CO₂ emissions. Urbanization has continuously promoted coal consumption in this area. These findings are extremely helpful for related departments in the Yangtze River Economic Zone to develop appropriate policies pertaining to energy savings and emissions reduction.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.923-933,fig.,ref.

Twórcy

autor
  • Department of Economics and Management, North China Electric Power University, Baoding, Hebei, China
autor
  • Department of Economics and Management, North China Electric Power University, Baoding, Hebei, China

Bibliografia

  • 1. Cetin M., Sevik H. Measuring the Impact of Selected Plants on Indoor CO₂ Concentrations. Pol. J. Environ. Stud. 25, 973, 2016.
  • 2. Cetin M. A Change in the Amount of CO₂ at the Center of the Examination Halls: Case Study of Turkey. Stud Ethno-Medicine. 10, 146, 2016.
  • 3. HASEEB M., HASSAN S., AZAM M. Rural-Urban Transformation, Energy Consumption, Economic Growth, and CO₂ Emissions Using STRIPAT Model for BRICS Countries. Environ. Prog. Sustain. 36 (2), 523, 2017.
  • 4. WEN L., LIU Y.J. A Research About Beijing’s Carbon Emissions Based on the IPSO-BP Model. Environ. Prog. Sustain. 36, 428, 2017.
  • 5. SHAHIDUZZAMAN M.D., LAYTON A. Changes in CO₂ emissions over business cycle recessions and expansions in the United States: A decomposition analysis. Appl. Energ. 150, 25, 2015.
  • 6. REMUZGO L., MARIA S.J. International inequality in CO₂ emissions: A new factorial decomposition based on Kaya factors. Environ. Sci. Policy. 54, 15, 2015.
  • 7. MOUTINHO V., MOREIRA A.C., SILVA P.M.. The driving forces of change in energy-related CO₂ emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis. Renew. Sust. Energ. Rev. 50, 1485, 2015.
  • 8. CHEN, L., YANG, Z.F. A spatio-temporal decomposition analysis of energy-related CO₂ emission growth in China. J. Clean. Prod. 103, 49, 2015.
  • 9. CHANG N., LAHR M.L. Changes in China’s production-source CO₂ emissions: insights from structural decomposition analysis and linkage analysis. Econ. Syst. Res. 28, 224, 2016.
  • 10. Di COSMO V., HYLAND M. Decomposing patterns of emission intensity in the EU and China: how much does trade matter? J. Environ. Plan. Manag., 58 (12) 2176, 2015.
  • 11. ZHAO L., Li L., ZHANG Y.J. Investigating the CO₂ emission differences among China's transport sectors and their influencing factors. Nat. Hazards. 77, 1323, 2015.
  • 12. MI Z.F., PAN S.Y., YU H. Potential impacts of industrial structure on energy consumption and CO₂ emission: a case study of Beijing. J. Clean. Prod. 103, 455, 2015.
  • 13. JIANG X.M., LIU Y.F., ZHANG J. Evaluating the role of international trade in the growth of china’s CO₂ emissions. J. Syst. Sci. Complex. 28, 907, 2015.
  • 14. ZHANG W.J., Li H.Q., CHEN B. CO₂ emission and mitigation potential estimations of China's primary aluminum industry. J. Clean. Prod. 103, 863, 2015.
  • 15. KANG L.X., LIU Y.Z. Multi-bjective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO₂ emissions control. Appl. Energ. 154, 696, 2015.
  • 16. YANG W.Y., LI T., CAO X.S. Examining the impacts of social-economic factors, urban form and transportation development on CO₂ emissions from transportation in China: A panel data analysis of China's provinces. Habitat Int. 49, 212, 2015.
  • 17. JOCHEM P., BABROWSKI S.J., FICHTNER W. Assessing CO₂ emissions of electric vehicles in Germany in 2030. Transp. Res. Part A-Policy. Prac. 78, 68, 2015.
  • 18. ZHAO X.L., YIN H.T., ZHAO Y. Impact of environmental regulations on the efficiency and CO₂ emissions of power plants in China. Appl. Energ. 149, 238, 2015.
  • 19. SOHAG K.Z., BEGUM R.A., ABDULLAH S.M.S. Dynamic impact of household consumption on its CO₂ emissions in Malaysia. Environ. Dev. Sust. 17, 1031, 2015.
  • 20. MARIMOUTOU V., SOURY M. Energy markets and CO₂ emissions: Analysis by stochastic copula autoregressive model. Energy. 88, 417, 2015.
  • 21. PABLO-ROMERO M.P., POZO-BARAJAS R., SANCHEZ-BRAZA A. Understanding local CO₂ emissions reduction targets. Renew. Sust. Energ. Rev. 48, 347, 2015.
  • 22. EBRAHIMI R., SALEHI M. Investigation of CO₂ emission reduction and improving energy use efficiency of button mushroom production using Data Envelopment Analysis. J. Clean. Prod. 103, 112, 2015.
  • 23. LIN B.Q., FEI R.L. Regional differences of CO₂ emissions performance in China's agricultural sector: A Malmquist index approach. Eur. J. Agron. 70, 3, 2015.
  • 24. YUAN R., ZHAO T., XU X.S. Regional Characteristics of Impact Factors for Energy-Related CO₂ Emissions in China, 1997-2010: Evidence from Tests for Threshold Effects Based on the STIRPAT Model. Environ. Model. Assess. 20, 129, 2015.
  • 25. WANG Y.N., ZHAO T. Impacts of energy-related CO₂ emissions: Evidence from under developed, developing and highly developed regions in China. Ecol. Indic. 50, 186, 2015.
  • 26. XU B., LIN B.Q. Assessing CO₂ emissions in China's iron and steel industry: A dynamic vector autoregression model. Appl. Energ. 161, 375, 2016.
  • 27. XU B., LIN B.Q. Reducing carbon dioxide emissions in China’s manufacturing industry: a dynamic vector autoregression approach. J. Clean. Prod. 131, 594, 2016.
  • 28. SIMS C.A. Macroeconomics and Reality. Econometrica. 48 (1), 1, 1980.
  • 29. DIETZ T., ROSA E.A. Effects of population and affluence on CO₂ emissions. Proc. Natl. Acad. Sci. USA. 94(1), 175, 1997.
  • 30. Sevik H., Cetin M. Effects of Water Stress on Seed Germination for Select Landscape Plants. Pol. J. Environ. Stud. 24 (2), 689, 2015.
  • 31. Cetin M., Sevik H. Indoor quality analysis of CO₂ for Kastamonu University”, Conference of the International Journal of Arts & Sciences, 09 (03), 71, 2016.
  • 32. Kravkaz Kuscu I.S., Cetin M., Yigit N., Savaci G., Sevik H. The Relationship of Enzyme Activity (Urease-Catalase) and Nutrient Element Related to the Use of Soil. Pol. J. Environ. Stud. 2018.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8f22b954-c5b0-4bed-aa92-e3406e4668b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.