PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Nitrogen and phosphorus removal from sewage in biofilter - activated sludge combined systems

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our paper analyzes nitrogen and phosphorus removal from sewage in a biofilter. The analysis was based on the multi-variant simulations of the combined system: fixed-film – activated sludge performance. An activated sludge ASIM 2d model related with the model of pollutions’ transformations in fixed film was used for the calculations. The results of exploitation analyses performed on the objective treatment plant – average daily rate of wastewater, pH, COD values, total suspended solids, total Kjeldahl nitrogen, nitrate nitrogen, total phosphorus, and alkalinity – were used as input parameters for the calculations. The results indicated that there is a possibility of including fixed-film in the activated sludge technology in order to improve nitrogen and phosphorus removal from the sewage. The nitrification process will be performed in fixed-film, whereas nitrogen and phosphorus removal from the sewage will be performed in anoxic chambers, which operate in the activated sludge technology. Denitrifying the dephosphatation process guarantees the high level of total phosphorus reduction (81%) and the 42% total nitrogen reduction, but only if the whole easily decomposable substrate will be consumed by microorganisms in the anoxic chamber and if enough nitrates will be present in the environment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1939-1947,fig.,ref.

Twórcy

autor
  • Department of Sanitary Engineering and Water Management, University of Agriculture, Krakow, Poland
  • Department of Sanitary Engineering and Water Management, University of Agriculture, Krakow, Poland
autor
  • Department of Sanitary Engineering and Water Management, University of Agriculture, Krakow, Poland

Bibliografia

  • 1. BUGAJSKI P., CHMIELOWSKI K., KACZOR G. Optimizing the percentage of sewage from septic tanks for stable operation of a wastewater treatment plant. Pol. J. Environ. Stud., 25 (4), 1421, 2016.
  • 2. WĄSIK E., CHMIELOWSKI K. Ammonia and indicator bacteria removal from domestic sewage in a vertical flow filter filled with plastic material. Ecological Engineering, 106, 378, 2017.
  • 3. MADEROVA Z., BALDIKOVA E., POSPISKOVA A., SAFARIK I., SAFARIKOVA M. Removal of dyes by adsorption on magnetically modified activated sludge. International Journal of Environmental Science and Technology, 13 (7), 1653, 2016.
  • 4. XIAO-MEI L., MING-FEI S., CHAO-LIN L., JI L., XIN-IEI G., FEI-YUN S. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes. Microbes Environ., 29 (3), 261, 2014.
  • 5. RUBIO-RINCÓN F., LOPEZ-VAZQUEZ C., WELLES L., VAN DEN BRAND T., ABBAS B., VAN LOOSDRECHT M., BRDJANOVIC D. Effects of electron acceptors on sulphate reduction activity in activated sludge processes. Appl. Microbiol. Biotechnol., 101, 6229, 2017.
  • 6. WILFERT P., KUMAR P.S., KORVING L., WITKAMP G.J., VAN LOOSDRECHT M.C M. The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: A review. Environ. Sci. Technol., 49, 9400, 2015.
  • 7. SCHOUMANS O.F., BOURAOUI F., KABBE C., OENEMA O., VAN DIJK K.C. Phosphorus management in Europe in a changing world. Ambio, 44, 180, 2015.
  • 8. HIROTA R., KURODA A., KATO J., OHTAKE H. Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses. J. Biosci. Bioeng., 109 (5), 423, 2010.
  • 9. CÉDRIC T., HUU-THANH N., BROGNAUX A., DELEPIERRE A., DE CLERCQ L., CHARLIER R., MICHELS E., MEERS E., DELVIGNE F. Characterization of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection. A Review. Sensor, 16 (6), 797, 2016.
  • 10. CAPODAGLIO A.G., HLAVÍNEK P., RABONI M. Advances in wastewater nitrogen removal by biological processes: state of art review. Ambiente & Água – An Interdisciplinary Journal of Applied Science, 11 (2), 250, 2016.
  • 11. NASEER R., ABDUALHAIL S., XIWU L. Biological nutrient removal with limited organic matter using a novel anaerobic-anoxic/oxic multi-phased activated sludge process. Saudi J. Biol. Sci., 20 (1), 11, 2013.
  • 12. FUDALA-KSIĄŻEK S., KULBAT E., ŁUCZKIEWICZ A. Nitrification, denitrification, and dephosphatation capability of activated sludge during co-treatment of intermediate-age landfill leachates with municipal wastewater. Environmental Technology, 38, 1, 2017.
  • 13. HUANG J., YANG P., LI C., GUO Y., LAI B., WANG Y., FENG L., ZHANG Y. Effect of nitre and nitrate concentrations on the performance of AFB-MFC enriched with high-strenght synthetic wastewater. Biotechnol. Res. Int. 2015, 798397, 2015.
  • 14. TODT D., DORSCH P. Mechanism leading to N₂O production in wastewater treating biofilm system. Rev. Environ. Sci. Biotechnol., 15 (3), 355, 2016.
  • 15. COSKUN D., BRITTO D.T, SHI W., KRONZUCKER H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants, 6, 17074, 2017.
  • 16. RABONI M., TORRETTA V., VIOTTI P., URBINI G. Experimental plant for the physical-chemical treatment of groundwater polluted by municipal solid waste (MSW) leachate, with ammonia recovery. Revista Ambiente & Agua, 8 (3), 22, 2013.
  • 17. PRAMANIK B.K., FATIHAH S., SHAHROM Z., AHMED E. Biological aerated filters (BAFS) for carbon and nitrogen removal: a review. Journal of Engineering Science and Technology, 7 (4), 428, 2012.
  • 18. CAPODAGLIO A.G., HLAVÍNEK P., RABONI M. Advances in wastewater nitrogen removal by biologic al processes: state of the art review. An Interdisciplinary Journal of Applied Science, 11 (2), 250, 2016.
  • 19. CAPODAGLIO A.G., HLAVÍNEK P., RABONI M. Advances in wastewater nitrogen removal by biologic al processes: state of the art review. An Interdisciplinary Journal of Applied Science, 11 (2), 250, 2016.
  • 20. STYKA W. Evaluation of the contribution of denitrification dephosphatation in the removal of phosphorus in SBR reactors. Conference materials: Research, design and operation of sequential reactors, 35, Poland, 2004.
  • 21. BORTONE G., SALTARELLI R., ALONSO V., SORM R., WANNER J., TILCHE A. Biological anoxic phosphorus removal – the DEPHANOX process. Water Science and Technology, 34 (1-2), 119, 1996.
  • 22. KAPAGIANNIDIS A.G., ZAFIRIADIS I., AIVASIDIS A. Upgrading the efficiency of an external nitrification BNR system – the modified Dephanox process. The Chemical Engineering Journal, 175 (1), 124, 2011.
  • 23. REN-JIAN D., JIN-SONG Z., ZHI-JUN Q. Characteristics of nitrogen and phosphorus removal in multiple post-denitrification process with different aeration rates. Journal of Residuals Science & Technology, 13, 107, 2015.
  • 24. WĄSIK E., CHMIELOWSKI K., STUDZIŃSKI J., SZELĄG B. Use of artificial neural networks to predict selected forms of nitrogen in the outflow from wastewater treatment plants. Ochrona Środowiska (in press), 2018. [In Polish].
  • 25. DÜRRENMATT D.J., GUJER W. Identification of industrial wastewater by clustering wastewater treatment plant influent ultraviolet visible spectra, 63 (6), 1153, 2011.
  • 26. BAYO J., LÓPEZ-CASTELLANOS J. Principal factor and hierarchical cluster analyses for performance assessment of an urban wastewater treatment plant in the Southeast of Spain. Chemosphere, 155, 152, 2016.
  • 27. WĄSIK, E., CHMIELOWSKI, K., OPERACZ A. PCA as a data mining tools characterizing the work of nitrification reactors in the sewage treatment plant in Trepcza. Acta Sci. Pol. Form. Cir., 16 (1), 209, 2017. [In Polish]
  • 28. YANG Y., YU K., XIA Y., LAU F.T.K., TANG D.T.W., FUNG W.C., FANG H.H.P., ZHANG T. Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Applied Microbiology and Biotechnology, 98 (12), 5709, 2014.
  • 29. GUJER W., HENZE M. Activated sludge modeling and simulation. Water Science and Technology, 23 (4-6), 1011, 1991.
  • 30. GUJER W., LARSEN T.A. The implementation of biokinetic and conservation principles in ASIM. Water Science and Technology, 31 (2), 257, 1995.
  • 31. GUJER W., HENZE M., MINO T., MATUSO T., WENTZEL M.C., MARAIS G.V.R. The Activated Sludge Model No 2. Biological phosphorus removal. Water Science and Technology, 31 (2), 1, 1995.
  • 32. GUJER W., HENZE M., MINO T., VAN LOOSDRECHT M. Activated Sludge Model No 3. Water Science and Technology, 39 (1), 183, 1999.
  • 33. HENZE M., GUJER W., MINO T., MATUSO T., WENTZEL M.C., MARAIS G.V.R., VAN LOOSDRECHT C.M. Activated Sludge Model No 2D, ASIM2D. Water Science and Technology, 39 (1), 165, 1999.
  • 34. SNIP L.J.P., BOIOCCHI R., FLORES-ALSINA X., JEPPSSON U., GERNAEY K.V. Challenges encountered when expanding activated sludge models: a case study based on N₂O production. Water Science Et Technology, 70 (7), 1251, 2014.
  • 35. WU X., YANGA Y., WU G., MAO J., ZHOU T. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM). Journal of Environmental Management, 165, 235, 2016.
  • 36. MACHADO V.C, LAFUENTE J., BAEZA J A. 2014. Activated sludge model 2d calibration with full-scale WWTP data: comparing model parameter identifiability with influent and operational uncertainty. Bioprocess and Biosystems Engineering, 37 (7), 1271, 2014.
  • 37. ALIKHANI J., TAKACS I., AL-OMARI A., MURTHY S., MASSOUDIEH A. Evaluation of the information content of long-term wastewater characteristics data in relation to activated sludge model parameters. Water Science Et Technology, 75 (6), 1370, 2017.
  • 38. GUO L., VANROLLEGHEM P.A. Calibration and validation of an activated sludge model for greenhouse gases no. 1 (ASMG1): prediction of temperature-dependent N₂O emission dynamics. Bioprocess and Biosystems Engineering, 37 (2), 151, 2014.
  • 39. IKUMI D.S., HARDING T.H., EKAMA G.A. Biodegradability of wastewater and activated sludge organics in anaerobic digestion. Water Research, 56, 267, 2014.
  • 40. MAKINIA J. Mathematical modeling and computer simulation of activated sludge system, 390, United Kingdom, 2010.
  • 41. RAUCH W., VANHOOREN H.,. VANROLLEGHEM P.A. A simplified mixed-culture biofilm model. Water Research, 33 (9), 2148, 1999.
  • 42. HENZE M., HARREMOËS P., JANSEN J., ARVIN E. Wastewater treatment. Biological and chemical processes. Publ. Kielce University of Technology, 359, Poland, 2002. [In Polish]
  • 43. KACZOR G., BERGEL T., BUGAJSKI P., PIJANOWSKI J. Aspects of sewage disposal from tourist facilities in national park and other protected areas. Pol. J. Environ. Stud., 24 (1), 107, 2015.
  • 44. BARNARD J.L., OLESZKIEWICZ J.A. Wastewater characteristics and examples of its impact on the size of the activated sludge chamber. Materials of the training seminar, 239, Poland, 2000.
  • 45. KUBA T., LOOSDRECHT M., HEIJNEN J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in two-sludge system. Water Research, 30 (7), 1702, 1996.
  • 46. BUGAJSKI P., WOŹNIAK-VECCHIE R. influence of organic compounds on nitrogen removal processes in a small wastewater treatment plant. Gaz, Woda, Technika Sanitarna, 10, 354, 2011. [In Polish]
  • 47. BUGAJSKI P. Assessment of nutrient removal reliability in a sewage treatment plant using the Weibull method. Zeszyty Problemowe Nauk Rolniczych, 276, 13, 2014. [In Polish]
  • 48. KUBA T., LOOSDRECHT M., HEIJNEN J. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Water Research, 31 (4), 777, 1997.
  • 49. CHEN Y., LI B., YE L., PENG Y. The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems. Biochemical Engineering Journal, 93, 235, 2015.
  • 50. MENG J., LI J., LI J., DENG K., NAN J., XU P. Effect of reflux ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating piggery wastewater with high ammonium and low COD/TN ratio: Efficiency and quantitative molecular mechanism. Bioresource Technology, 243, 922, 2016.
  • 51. Du D., Zhang C., Zhao K., Sun G., Zou S., Yuan L., He S. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure. Front. Environ. Sci. Eng., 12 (2), 1, 2018.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8f008a8f-4b6f-4e46-ae8c-b598e0e706de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.