PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

How different nitrogen application rates affect yield composition and nitrogen uptake of rice (Oryza sativa L.) in a saline-sodic paddy field

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Planting rice (OryzasativaL.) is an effective and feasible approach for improving salt-affected soils, especially in saline-sodic soils. Improved rice is the main biological measure for rapid treatment and utilization of a saline-sodic paddy field. Reasonable application of nitrogen fertilizer is an important measure for obtaining saline-sodic soil high yield. Dongdao 4 (D-4), Dongdao 2 (D-2), Changbai 9 (C-9), and Baijing 1 (B-1)) were studied by a field experiment in this paper. On the growth, yield, and yield component responses of different nitrogen levels (150 kg N/ha, 225 kg N/ha and 300 kg N/ha), and the nitrogen uptake of four saline-tolerant rice cultivars at different nitrogen application levels was calculated, which provided a useful reference for the rational application of nitrogen fertilizer in a salinesodic paddy field. The results showed that: biomass of four kinds of rice accumulates over time and reached their maximums in September, with the biomasses of D-2 and D-4 reaching the maximum of 225 kg N/ha, and C-9 and B-1 reaching the maximum at 300 kg N/ha, which is related to rice varieties; the yields of four salt-tolerant rice plants reached the highest in 150 kg N/ha; applied nitrogen fertilizer reasonably was beneficial to increase the number of spikes and the number of effective grains per spike, in this experiment, the optimum amount of nitrogen is 150 kg N/ha, and the number of spikes and the number of effective grains per spike also were major factors in increasing production. With 1000-grain weight, primary and secondary branches made no significant contribution to the yield; the N uptake of four kinds of rice gradually increased over time and reached the maximum in September. There was no significant difference in the nitrogen grain production efficiency of 4 rice varieties under different nitrogen application rates; with the increase of nitrogen application rate, partial productivity of nitrogen fertilizer nitrogen of 4 rice varieties all decreased. Therefore, reasonable application of nitrogen fertilizer promoted the uptake and transfer of nitrogen to the plant.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.553-564,fig.,ref.

Twórcy

autor
  • Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
  • Da`an Sodic Land Experiment Station, Chinese Academy of Sciences, Da`an Jilin, China
autor
  • Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
  • Da`an Sodic Land Experiment Station, Chinese Academy of Sciences, Da`an Jilin, China
autor
  • Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
  • Da`an Sodic Land Experiment Station, Chinese Academy of Sciences, Da`an Jilin, China
autor
  • Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
  • Da`an Sodic Land Experiment Station, Chinese Academy of Sciences, Da`an Jilin, China
autor
  • Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
  • Da`an Sodic Land Experiment Station, Chinese Academy of Sciences, Da`an Jilin, China

Bibliografia

  • 1. SZABOLCS I. Soils and salinization. In Handbook of Plant and Crop Stress. New York: Marcel Dekker, 3, 1994.
  • 2. KHAN M.J., JAN M.T., KHAN A.U., ARIF M., SHAFI M. Management of saline sodic soils through cultural practices and gypsum. Pakistan Journal of Botany, 42, 4143, 2010.
  • 3. AYERS R.S., WESTCOTT D.W. 1989. Water Quality for Agriculture. FAO Irrigation and Drainage Paper 29, Rev.1. Rome, Italy, FAO, 1989.
  • 4. NANDAL M., HOODA R. Salt tolerance and physiological response of plants tosalinity: a review. Int. J. Sci. Eng. Res. 4, 45, 2013.
  • 5. HUANG L.H., LIANG Z.W., SUAREZ D.L., WANG Z.C., WANG M.M., YANG H.Y., LIU M. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. The Journal of Agricultural Science, 154, 632, 2016.
  • 6. DAGAR J., MINHAS P. Global Perspectives on Agroforestry for theManagement of Salt-Affected Soils. Agroforestry for the Management of Waterlogged Saline Soils and Poor-Quality Waters. Springer, 5, 2016.
  • 7. Wang C., Zhang Q. Test report on yield characters and resistance of rice variety 4. Agriculture of Jilin, 3, 84, 2016.
  • 8. SONG Y., LIU B., ZHONG H.. Impact of global warming on the rice cultivable area in Southern China in 1961-2009. Advances in Climate Change Research, 7, 259, 2011.
  • 9. WANG M., YANG F., MA H., WEI L., HUANG L., LIU M., YANG H., LI J., LI X., LIU X. Cooperative effects of sand application and flushing during the sensitive stages of rice on its yield in a hard saline sodic soil. Plant Prod. Sci., 19, 1, 2016
  • 10. CHI C.M., ZHAO C. W., SUN X., WANG Z.C. Reclamation of saline-sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, northeast China. Geoderma, 24, 187, 2012.
  • 11. CHEN G.K., HE H.Z., GAO H.S.,LI H.S., ZHANG Z.M. Differential responses of two rice varieties to perchlorate stress. Pol. J. Environ. Stud. 24(1), 67, 2015.
  • 12. ZHU D.W., HAN J.C., WU S.Z. The Bioaccumulation and Migration of Inorganic Mercury and Methylmercury in the Rice Plants. Pol. J. Environ. Stud. 26(4), 1905, 2017.
  • 13. YANG C., SHI D., WANG D. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul, 56, 179, 2008.
  • 14. ZHANG X.G., HANG B., LIANG Z.W., ZHAO Y.C., SUN W.X., HUI W.Y. Study onsalinization characteristics of surface soil in Western Songnen Plain. Soils, 45, 332, 2013.
  • 15. ZHANG H., HHUANG L.H., LI Y., WANG H.B., LIANG Z.W. Research and experience of planting in saline-sodic soil in Northeast China. Soils and Crops, 5, 191, 2016.
  • 16. ZHENG S.Z., XIAO M.H., MIAO Z.M. Nitrogen losses in paddy field drainage modified by different water level regulations. Pol. J. Environ. Stud. 26 (3), 1393, 2017.
  • 17. SINGH R.K., REDONA E.D., REFUERZO L. Varietal improvement for a bioticstress tolerance in crop plants, special reference to salinity in rice. In: Pareek, A.,Sopory, S.K., Bohnert, H.J., Govindjee (Eds.), Abiotic Stress Adaptation in Plants, Physiological, Molecular and Genomic Foundation. Springer, New York, 387, 2010.
  • 18. RAY D., MUELLER, N., WEST P., FOLEY J. Yield trends are insufficient to double global crop production by 2050. PLOS ONE, 8, e66428, 2015.
  • 19. ZHU Z. Progress in research and development of transgenic rice. Journal of Agricultural Science and Technology, 12, 9, 2010.
  • 20. LIU Z.Y., YANG J.X., WAN X.M., PENG Y.S., LIU J., WANG X.D., ZENG M. How red mud-iInduced enhancement of iron plaque formation reduces cadmium accumulation in rice with different radial oxygen loss. Pol. J. Environ. Stud. 25(4), 1603, 2016.
  • 21. LI Y.Y., SHAO X.Y., SHENG Z.P., GUAN W.L., XIAO M.H. Water conservation and nitrogen loading reduction effects with controlled and mid-gathering irrigation in a paddy field. Pol. J. Environ. Stud. 25(3), 1085, 2016.
  • 22. CHAI L.T., GENG Y.H., SONG Y.D., MOU F.J., QIN S., QIAO H. Effects of Phosphate Fertilizer on Inorganic Phosphorus of Saline-Alkali Paddy Soil in the Western of Jilin Province. Journal of Soil and Water Conservation, 29 (6), 197, 2015.
  • 23. PEARSON, G.A. Tolerance of Crops to Exchangeable Sodium. Agriculture Information Bulletin. Washington, DC: USDA-ARS, 1960.
  • 24. VANASTEN P.J.A., VANTZELFDE J.A.. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel. Geoderma, 119, 233, 2004
  • 25. SHEN J.L., WANG B., TIAN X.p., XU X. Effect of improvement modes on physico-chemical characteristics of salinealkali soil and rice yield. Jiangsu J. of Agr. Sci. 32(2), 338, 2016.
  • 26. HOU Y.P., YANG J., KONG L.L., QIN Y.B., WANG L.C., XIE J.G. Effects of phosphorus fertilizer application on nutrient absorption, translocation and distribution of rice in saline-sodic soil region. Journal of Jilin Agricultural University, 39 (1), 60, 2017.
  • 27. LI T.Y., YUAN X.Y., SONG Y.X., CHEN H.Y., LIU Q., HU S. Influence of heavy metals and nutrient concentrations on selenium geochemical behavior in soil-rice system. Pol. J. Environ. Stud. 25 (1), 185, 2016.
  • 28. CASSMAN K.G., DOBERMANN A., WALTERS D.T., YANG H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources, 28, 315, 2003.
  • 29. QIAO J., YANG L., YAN T., XUE F., ZHAO D. Rice dry matter and nitrogen accumulation, soil mineral N around root and N leaching, with increasing application rates of fertilizer. European Journal of Agronomy, 49, 93, 2013.
  • 30. SPIERTZ J.H. Nitrogen, sustainable agriculture and food security. A review. Agronomy for Sustainable Development, 30, 43, 2010.
  • 31. HAN Y., FAN Y., YANG P., WANG X. Net anthropogenic nitrogen inputs (NANI) index application in mainland China. Geoderma, 213, 87, 2014.
  • 32. ZHANG Y.T., WANG H.Y., LIU S., LEI QL., LIU J. Identifying critical nitrogen application rate for maize yield and nitrate leaching in a haplicluvisol soil using the DNDC model. Total Environ, 514, 388, 2015.
  • 33. ZHAO X., ZHOU Y., MIN J., WANG S.Q., SHI W.M., XING G.X. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agric. Ecosyst. Environ, 156, 1, 2012.
  • 34. LAI R., ARCA P., LAGOMARSINO A., CAPPAI C., SEDDAIU G., DEMURTAS C. E., & ROGGERO P. P. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena, 151, 202, 2017.
  • 35. DING W., CAI Y., CAI Z., YAGI K., ZHENG X Soil respiration under maize crops: effects of water, temperature, and nitrogen fertilization. Soil Sci. Soc. Am. J, 71 (3), 944, 2007.
  • 36. MANCINELLI R., CAMPIGLIA E., DI T A., MARINARI S.. Soil carbon dioxide emission and carbon content as affected by conventional and organic cropping systems in Mediterranean environment. Appl. Soil Ecol. 46, 64, 2010.
  • 37. LOPEZ G., LOBO M. C., NEGRE A., COLOMBAS M., ROVIRA J.M., MARTORELL A., REOLID C., SASTRE C.I.. Impact of fertilisation practices on soil respiration, as measured by the metabolic index of short-term nitrogen input behavior. J. Environ.Manag. 113, 517, 2012.
  • 38. WANG Y., HU C., DONG W., LI X., ZHANG Y., QUIN S., OENEMA O. Carbon budget of awinter-wheat and summer-maize rotation cropland in the North China Plain. Agric.Ecosyst. Environ. 206, 33, 2015.
  • 39. GUO C., XU Z.W., LI X.K. Effects of different nitrogen fertilization treatments on yield, nitrogen uptake and use efficiency of rice. Soils, 46, 618, 2014.
  • 40. HUANG L.H., SHEN J., FENG G,Z., WANG Z.G., GAO Q. Effects of combined application of N, P and K on rice yields and regular of absorbing nutrients in Saline-alkaline field. Research of Agricultural Modernization, 31, 216, 2010.
  • 41. ZHU Z.L., ZHANG F.S. Basic research on nitrogen behavior and nitrogen use efficiency in main agroecosystem. Science and Technology Press, Beijing. 2010.
  • 42. TOLATLI C. Drinking water quality of a rice land in Turkey by statistical and GIS Perspectives. Pol. J. Environ. Stud. 23 (6), 2247, 2014.
  • 43. ZHOU Q., CHEN X.H., YE Y.X. Effects of bio fertilizer fertilization on soil enzyme activities in rice seedling raising bed. Chinese Agricultural Science Bulletin, 27, 26, 2011.
  • 44. YU J.H. Selection of thermo tolerant japonica rice from northeast China and study on the adaptability of high temperature. Hunan Agriculture University. 2012.
  • 45. HOU W., GAO Z.X., YANG C.L., WANG L.Y., XU H.F. Study on physiological character and yield on saline-sodicsoil of water-saving cultivation. Guangdong Agricultural Sciences, 7, 38, 2012.
  • 46. LI H.Y., SUN G.Y., ZHAO L.Y., WANG W.H.,WAMG G.S., YAN X.M., LUO Y.T., WANG S.K., YUE F.S.Key Techniques of Large-scale Super-High-Yield of Rice in Light Soda Saline-Alkali Soil. Journal of Jilin Agricultural Sciences, 38 (2), 11, 2013.
  • 47. ZHU Z.L., ZHANG F. S. The basic research of nitrogen behavior and nitrogen fertilizer utilization in main farmland ecosystem. Science and technology press, Beijing, 2010.
  • 48. GRATTAN S.R. GRIEVE C.M. Mineral nutrient acquisition and response by plants grown in saline environments. In Handbook of Plant and Crop Stress (Ed. M. Pessarakli), New York: Marcel Dekker, 203, 1999.
  • 49. WANG Z.W., ZENG X.F., GENG M.S., CHEN C.Y., CAI J.C., YU X.M., HOU Y.Y., ZHANG H. Health risks of heavy metals uptake by crops grown in a sewage irrigation area in China. Pol. J. Environ. Stud. 24 (3), 1379, 2015.
  • 50. ZHANG H., HUANG L.H., WANG H.B., LIANG Z.W. Research and experience of rice planting in saline-sodic soil in Northeast China. Soils and Crops, 5 (3), 191, 2016.
  • 51. SOLIMAN M.S., SHALABI H.G., CAMPBELL W.F., Interaction of salinity, nitrogen, and phosphorus fertilizationon wheat. Journal of Plant Nutrition, 17, 1163, 1994.
  • 52. ZHANG M., WANG Y., ZHAO L.P., HAN X., WANG H.P., GENG Y.H., ZHAO Z.J., LI H.L., YE.Q. Experiment research of water Resources Utilization on Soda Saline-alkali Soil Improvement by Planting Rice in the Field. Journal of Irrigation and Drainage, 33 (1), 132, 2014.
  • 53. SEMIZ G.D., SUAREZ D.L., UNLUKARA A., YURTSEVEN E.. Interactive effects of salinity and N on pepper(Capsicum annuum L.) yield, water use efficiency androot zone and drainage salinity. Journal of Plant Nutrition, 37, 595, 2014.
  • 54. HUO X., SHI H.B., TIAN D.L., YAN J.W., DAI J.X. The study of salt water and nitrogen coupling effect on potted sunflower and it’s yield model. Water saving irrigation, 6, 22, 2012.
  • 55. LU Y.H., LIAO Y.L., TANG H.T., HUANG T.P., XIA H.A., LI X.Y., ZUO G.H. Effects of Nitrogen Application on Rice Yield, Nitrogen Uptake and Use Efficiency. Research of agricultural modernization. 31, 479, 2010.
  • 56. EAGLE A.J., BIRD J.A., HORWATH W.R. Rice yield and nitrogen utilization efficiency under alternative straw management practices. Agron J. 92, 1096, 2010.
  • 57. ZHANG J.L., FLOWERS T.J., WANG S.M. Mechanisms of sodium uptake by rootsof higher plants. Plant Soil, 326, 45, 2010.
  • 58. ZHANG H., HUANG L.H., WANG H.B., LI Y.Y. Differences of soil microbes in different saline-sodic grasslands and their relations with soil salinity and nutrients. Journal of Jilin Agricultural University, 38 (6), 703, 2016.
  • 59. IQBAL A.S., ABBASL M.K., RASOOL G. Integrated plant nutrition system (IPNS) in wheat under rainfed condition of Rawalkot Azad Jammu and Kashmir. Pak J Soil Sci, 21, 79, 2002.
  • 60. LU Y.H., LIAO Y.L., TANG H.T. Effects of nitrogen application on rice yield, nitrogen uptake and use efficiency. Research of Agricultural Modernization, 31, 479, 2010.
  • 61. LIU X., ZHANG Y., HAN W., TANG A.H., SHEN J., CUI Z., VITOUSEK P., ERISMAN J.W., GOULDING K. Enhanced nitrogen deposition over China. Nature, 494, 459, 2013.
  • 62. LI C.K., ZHAN G.J., LIU Y., XU J.S. Summary on the experiment of planting rice in soda-saline-alkali Soil. North Rice, 41 (1), 33, 2014.
  • 63. XU J.Z., W Q., YU Y.M., PENG S.Z., YANG S.H. Leaching of Heavy Metals from Rice Fields with Different Irrigation Management. Pol. J. Environ. Stud. 23(6), 2279, 2014.
  • 64. YAN J., YIN B., ZHANG S., SHEN Q., ZHU Z.L. Effect of nitrogen application rate on nitrogen uptake and distribution in rice. Plant Nutrition and Fertilizer Science, 14, 835, 2008.
  • 65. PAN S.G., HUANG S.Q., ZHAI J., CAI M.L., CAO C.G., ZHAN M., TANG X.R. Effects of nitrogen rate and its basal to dressing ratio on uptake, translocation of nitrogen and yield in rice. Soils, 44, 23, 2012.
  • 66. Guo J.H., Liu X.J., Zhang Y. significant acidification in major Chinese croplands. Science, 327, 1008, 2010.
  • 67. GENG Y.Q., JIN F., ZHU M.X., GAO X.Y., WANG SHUAI, H.S., SHAO X.W., ZHANG L.X. Effects of Different Soil Water Potential at Early Tillering Stage on Rice Yield and Physiological Traits in Saline-alkali Soil. Journal of Jilin Agricultural University, 5, 1, 2017.
  • 68. LIU H.H., LIU G.H., ZHOU Y.F., HE C. Spatial distribution and influence analysis of soil heavy metals in a hilly region of Sichuan basin. Pol. J. Environ. Stud. 26 (7), 725, 2017.
  • 69. DONG G.C., WANG Y.L., ZHOU J., ZHANG B., ZHANG C.S., ZHANG Y.F., YANG L.X., HUANG J.H. Difference of Nitrogen Accumulation and Translocation in Conventional Indica Rice Cultivars with Different Nitrogen Use Efficiency for Grain Output. Acta Agronomica Sinica, 35, 149, 2009.
  • 70. LIU L.H., WANG X.B., TANG F.L. Stability of yield and yield components of rice and correlation analysis of high-yield related characters. Agricultural Research in the Arid Areas, 31, 84, 2013.
  • 71. BAI J.J., ZHU H.M., LI D.L., SUN B.Y., PIAO Z.Z. Differences of nitrogen uptake and utilization among rice lines exhibiting different nitrogen grain production efficiency. Journal of Anhui Agricultural University, 37, 401, 2010.
  • 72. ALI A. Effect of Salinity and mixed ammonium and nutrition on the growth and nitrogen utilization of barley J.Agron. Crop Sci., 186, 223, 2001.
  • 73. GU X.Y., LIANG Z.W., HUANG L.H., MA H.Y. Effects of different rate of seeds on the seedling quality and yields of rice in the saline-sodic fields. Acta Agriculturae Boreali-Sinica, 26, 65, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8e6e18b3-b2c6-4d30-81e0-9787ac9c3db1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.