PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 66 | 2 |

Tytuł artykułu

Effect of lyophilization on survivability and growth kinetic of Trichoderma strains preserved on various agriculture by-products

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Growth kinetics of four Trichoderma strains was tested on lignocellulosic by-products in solid state fermentation (SSF). The strains were also analyzed for their survival rate and growth after lyophilization on these carriers. All applied monocomponent and bicomponent media were substrates for the production and preservation of Trichoderma biomass.However, the maximum number of colony forming units (CFU/g dm) was acquired on bicomponent media based on dried grass and beet pulp or grass with corn cobs, when compared to monocomponent media. Although the process of lyophilization reduced the survival rate by 50–60%, the actual number of viable cells in obtained biopreparations remained relatively high (0.58 × 10⁸ – 1.68 × 10⁸ CFU/g dm). The studied strains in the preserved biopreparations were characterized by a high growth rate, as evaluated in microcultures using the Bioscreen C system.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

66

Numer

2

Opis fizyczny

p.181-188,fig.,ref.

Twórcy

autor
  • Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
  • Laboratory of Reproductive Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
autor
  • Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
autor
  • Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
  • Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland

Bibliografia

  • Benitez T., A.M. Rincón, M.C. Limón and A.C. Codón. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7: 249–260.
  • Błaszczyk L., M. Siwulski, K. Sobieralski, J. Lisiecka and M. Jędryczka. 2014. Trichoderma spp. – application and prospects for use in organic farming and industry. J. Plant Prot. Res. 54(4): 309–317.
  • Chaverri P., F. Branco-Rocha, W. Jaklitsch, R. Gazis, T. Degen-kolband and G.J. Samuels. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107: 558–590.
  • Daniel J.F. and E.R. Filho. 2007. Peptaibols of Trichoderma. Nat. Prod. Rep. 24: 1128–1141.
  • Degenkolb T., H. von Döhren, K. Nielsen, G.J. Samuels andH. Brückner. 2008. Recent advances and future prospects in pep-taibiotics, hydrophobin, and mycotoxin research, and their impor-tance for chemotaxonomy of Trichoderma and Hypocrea. Chem. Biodivers. 5: 671–680.
  • Gerhardson B. 2002. Biological substitutes for pesticides. Trends Biotechnol. 20(8): 338–343.
  • Guijarro B., I. Larena, P. Melgarejo and A. de Cal. 2006. Effect of drying on conidial viability of Penicillium frequentans, a biological control agent against peach brown rot disease caused by Moniliniaspp. Biocontrol Sci. Technol. 16(3/4): 257–269.
  • Howell C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87: 4–10.
  • Hubalek Z. 2003. Protectants used in the cryopreservation of micro-organisms. Cryobiology 45: 206–229.
  • Jash S. and S. Pan. 2007. Variability in antagonistic activity and root colonizing behavior of Trichoderma isolates. J. Trop. Agr. 45(1–2): 29–35.
  • John R.P., R.D. Tyagi, D. Prévost, S.K. Brar, S. Pouleur andR.Y. Surampalli. 2010. Mycoparasitic Trichoderma viride as a bio-logical agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot. 29: 1452–1459.
  • Kancelista A. and D. Witkowska. 2008. Biosynthesis of some lytic enzymes in medium containing waste corn cobs by filamentous fungi from Trichoderma genus (in Polish). Acta Sci. Pol. Biotechnol. 7(1): 17–25.
  • Kancelista A., U. Tril, R. Stempniewicz, M. Piegza, M. Szczech and D. Witkowska. 2013. Application of lignocellulosic waste mate-rials for the production and stabilization of Trichoderma biomass. Pol. J. Environ. Stud. 4: 1083–1090.
  • Kaewchai S., K. Soytong and K.D. Hyde. 2009. Mycofungicides and fungal biofertilizers. Fungal Diversity 38: 25–50.
  • Khan M.O. and S. Shahzad. 2007. Screening of Trichoderma species for tolerance to fungicides. Pak. J. Bot. 39(3): 945–951.
  • Kovacs K., S. Macrelli, G. Szakacs and G. Zacchi. 2009. Enzymatic hydrolysis of steam-pretreated ligninocellulosic with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2: 14.
  • Kredics L., Z. Antal, L. Manczinger, A. Szekeres, F. Kevei andE. Nagy. 2003. Influence of environmental parameters on Tr i cho-derma strains with biocontrol potential. Food Technol. Biotechnol. 41(1): 37–42.
  • Lewis J.A. and G.C. Papavizas. 1983. Production of chlamydo-spores and conidia by Trichoderma spp. in liquid and soil growth media. Soil Biol. Biochem 15(3): 351–357.
  • Manso T., C. Nunes, S. Raposo and M.E. Lima-Costa. 2010. Carob pulp as raw material for production of the biocontrol agent P. agglo-merans PBC-1. J. Ind. Microbiol.Biotechnol. 37: 1145–1155.
  • Matroudi S., M.R. Zamani and M. Motallebi. 2009. Antagonistic effects of three species of Trichoderma sp. on Sclerotinia sclerotiorum, the causal agent of canola stem root. Egyp. J. Biol. 11: 37–44.
  • Mitchell D.A., M. Berovic and N. Krieger. 2002. Overview of solid state bioprocessing. Biotechnol. Ann. Rev. 8: 183–225.
  • Mondala A.H. 2015. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J. Ind. Microbiol. Biotechnol. 42(4): 487–506.
  • Monte E. and A. Llobell. 2003. Trichoderma in organic agriculture, pp. 725–733. Proceedings V World Avocado Congress, http://www.avocadosource.com/WAC5/Papers/WAC5_p725.pdf, 2015.10.10.
  • Monteiro V.N., R do Nascimento Silva, A.S. Steindorff, F.T. Costa, C.A. Ricart, M.V. de Sousa, M.H. Vainstein and C.J. Ulhoa. 2010. New insight in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Curr. Microbiol. 61: 298–305.
  • Morgan C.A., N. Herman, P.A. White and G. Vesey. 2006. Pre-servation of micro-organisms by drying; A review. J. Microbiol. Methods. 66: 183–193.
  • Oskiera M., M. Szczech and G. Bartoszewski. 2015. Molecular identification of Trichoderma strains collected to develop plant growth-promoting and biocontrol agents. J. Hort. Res. 23(1): 75–86.
  • Orzua M.C., S.I. Mussatto, J.C. Contreraz-Esquivel, R. Rodriguez, H. de la Garza, J.A Teixeira and C.N. Aguilar. 2009. Exploitation of agro industrial wastes as immobilization carrier for solid state fermentation. Ind. Crop Prod. 30(1): 24–27.
  • Panahian G.H., K. Rahnama and M. Jafari. 2012. Mass produc-tion of Trichoderma ssp. and application. Intern. Res. J. Appl. Basic Sci. 3(2): 292–298.
  • Pedreschi F. and J.M. Aguilera. 1997. Viability of dry Trichoderma harzianum spores under storage. J.Bioproc. Engineering. 17: 177–183.
  • Piegza M., J. Stolaś, A. Kancelista and D. Witkowska. 2009. Influ-ence of Trichoderma strains on the growth of pathogenic moulds in biotic test on untypical carbon sources (in Polish). Acta Sci. Pol. Biotechnol. 8(1): 4–14.
  • Prakash O., Y. Nimonkar and Y.S. Schouche. 2013. Practice and prospects of microbial preservation. FEMS Microbiol. Lett. 339: 1–9.
  • Rossi-Rodrigues B.C., M.R. Brochetto-Braga, S.M. Tauk-Tor ni-sielo, E.C. Carmona, V.M. Arruda and J.C. Netto. 2009. Compara-tive growth of Trichoderma strains in different nutritional sources, using Bioscreen C automated system. Braz. J. Microbiol. 40: 404–410.
  • Simões M.L.G., S.M. Tauk-Tornisielo and D.M. Tapia. 2009. Screening of culture condition for xylanase production by filamen-tous fungi. Afr. J. Biotechnol. 8(22): 6317–6326.
  • Skoneczny D., M. Oskiera, M. Szczech and G. Bartoszewski. 2015. Genetic diversity of Trichodermaatroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiol. 60(4): 297–307.
  • Smolińska U., B. Kowalska, W. Kowalczyk and M. Szczech. 2014. The use of agro-industrial wastes as carriers of Trichoderma fungi in the parsley cultivation. Sci. Hortic. 179: 1–8.
  • Tewari L. and C. Bhanu. 2004. Evaluation of agro-industrial wastes for conidia bases inoculum production of bio-control agent: Tricho-derma harzanium. J. Sci. Ind. Res. 6: 807–812.
  • Thomas L., Ch. Larroche and A. Pandey. 2014. Current develop-ments in solid-state fermentation. Biochem. Eng. J. 81: 146–161.
  • Viterbo A., O. Ramot, L. Chernin and I. Chet. 2002. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. A Van Leeuw J. Microb. 81: 549–556.
  • Witkowska D. and A. Maj. 2002. Production of lytic enzymes by Trichoderma spp. and their effect on the growth of phytopathogenic fungi. Folia Microbiol. 47(3): 279–282.
  • Xin F. and A. Geng. 2010. Horticultural waste as the substrate for cellulose and hemicellulase production by Trichoderma reesei under solid – state fermentation. Appl. Biochem. Biotechnol. 162: 295–306.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8e073fc0-9178-40f4-a6b4-160bbfb40cf9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.