PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 10 | 2 |

Tytuł artykułu

Genetic diversity and phylogeography of the greater mouse-tailed bat Rhinopoma microphyllum (Brunnich, 1782) in the Levant

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The greater mouse-tailed bat (Rhinopoma microphyllum) possesses a large geographical range, covering most of the arid and warm areas of the Old World. We studied the genetic variability of this species using two mitochondrial markers (the cytochrome b gene and the control region), from several Israeli colonies and from over most of the species' range. Our results show that the cytochrome b sequences, unlike those of the control region, are too conserved to separate among R. microphyllum populations. Based on the control region sequences, a high level of sequence similarity was found within the Israeli population. Three clades were observed over the species' range: Oriental, Intermediate and Palaearctic. This division supports most of the traditional taxonomy of the species. The Israeli population, which belongs to the Palaearctic clade, was found to be isolated from the Oriental and Intermediate clades. We suggest that the colonization of the greater mouse-tailed bat in the Levant occurred from African populations during the late Pleistocene, when many Saharan plants and animals penetrated the northern part of the Great Rift Valley.

Wydawca

-

Rocznik

Tom

10

Numer

2

Opis fizyczny

p.207-212,fig.,ref.

Twórcy

autor
  • Department of Zoology, Tel Aviv University, 69978 Tel Aviv, Israel
autor
  • Department of Zoology, Tel Aviv University, 69978 Tel Aviv, Israel
autor
  • Department of Natural and Life Sciences, The Open University of Israel, 43107 Ra'anama, Israel
autor
  • Department of Zoology, Tel Aviv University, 69978 Tel Aviv, Israel

Bibliografia

  • 1. F. E. Anderson and D. L. Swofford . 2004. Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Molecular Phylogenetics and Evolution 33:440–451. Google Scholar
  • 2. H. J. Bandelt, P. Forster, B. C. Sykes, and M. B. Richards . 1995. Mitochondrial portraits of human populations. Genetics 141:743–753. Google Scholar
  • 3. P. Benda, M. Andreas, D. Kock, R. K. Lučan, P. Munclinger, P. Nová, J. Obuch, K. Ochman, A. Reiter, M. Uhrin, and D. Weinfurtova . 2006. Bats (Mammalia: Chiroptera) of the eastern Mediterranean. Part 4. Bat fauna of Syria: distribution, systematics, ecology. Acta Societas Zoologicae Bohemicae 70:1–329. Google Scholar
  • 4. S. F. Chen, S. J. Rossiter, C. S. Faulkes, and G. Jones . 2006. Population genetic structure and demographic history of the endemic Formosan lesser horseshoe bat (Rhinolophus monoceros). Molecular Ecology 15:1643–1656. Google Scholar
  • 5. E. J P. Douzery and D. Huchon . 2004. Rabbits, if anything, are likely Glires. Molecular Phylogenetics and Evolution 33:922–935. Google Scholar
  • 6. D. L. Harrison and P. J J. Bates . 1991. The mammals of Arabia. 2nd editionHarrison Zoological Museum. Sevenoaks, United Kingdom. 354. pp. Google Scholar
  • 7. J. E. Hill 1977. A review of the Rhinopomatidae (Mammalia: Chiroptera). Bulletin of the British Museum (Natural History), Zoology Series 32:29–43. Google Scholar
  • 8. P. Hulva, I. Horáček, and P. Benda . 2007. Molecules, morphometrics and new fossils provide an integrated view of the evolutionary history of Rhinopomatidae (Mammalia: Chiroptera). BMC Evolutionary Biology 7:165–180. Google Scholar
  • 9. K. Katoh, K. Misawa, K. Kuma, and T. Miyata . 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30:3059–3066. Google Scholar
  • 10. D. Kock 1969. Die Fledermaus-fauna des Sudan (Mammalia, Chiroptera). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 521:1–238. Google Scholar
  • 11. P. Lesica and F. W. Allendorf . 1995. When are peripheral populations valuable for conservation. Conservation Biology 9:753–760. Google Scholar
  • 12. B. D. Lloyd 2003. The demographic history of the New Zealand short-tailed bat Mystacina tuberculata inferred from modified control region sequences. Molecular Ecology 12:1895–1911. Google Scholar
  • 13. H. Mendelssohn and Y. Yom-Tov . 1999. Mammalia of Israel. The Israel Academy of Sciences and Humanities. Jerusalem. 439. pp. Google Scholar
  • 14. C. Moritz 2002. Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology 51:238–254. Google Scholar
  • 15. M. Nei 1987. Molecular evolutionary genetics. Columbia University Press. New York. 512. pp. Google Scholar
  • 16. D. Posada and K. A. Crandall . 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. Google Scholar
  • 17. J. Rozas, J. C. Sanchez-Delbarrio, X. Messeguer, and R. Rozas . 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. Google Scholar
  • 18. A. L. Russell, R. A. Medellín, and G. F. Mccracken . 2005. Genetic variation and migration in the Mexican free-tailed bat (Tadarida brasiliensis mexicana). Molecular Ecology 14:2207–2222. Google Scholar
  • 19. K. Safi, B. König, and G. Kerth . 2007. Sex differences in population genetics, home range size and habitat use of the parti-colored bat (Vespertilio murinus, Linnaeus 1758) in Switzer land and their consequences for conservation. Biology Conservation 137:28–36. Google Scholar
  • 20. J. Sambrook, E. F. Fritsch, and T. Maniatis . 1989. Molecular cloning: a laboratory manual. 2nd editionCold Spring Harbor Laboratory Press. New York. Google Scholar
  • 21. D. A. Schlitter and A. F. Deblase . 1974. Taxonomy and geographic distribution of Rhinopoma microphyllum (Chiroptera: Rhinopomatidae) in Iran, with a description of a new subspecies. Mammalia 38:657–665. Google Scholar
  • 22. D. A. Schlitter and M. B. Qumsiyeh . 1996. Rhinopoma microphyllum. Mammalian Species 542:1–5. Google Scholar
  • 23. A. Shehab, A. Karataş, Z. Amr, I. Mamkhair, and M. Sözen . 2007. The distribution of bats (Mammalia: Chiroptera) in Syria. Vertebrate Zoology 57:103–132. Google Scholar
  • 24. N. B. Simmons 2005. Order Chiroptera. Pp 312–529. in Mammal species of the World: a taxonomic and geographic reference. 3rd edition D. E. Wilson and D. M. Reeder , editors. eds. Johns Hopkins University Press. Baltimore. 2142. pp. Google Scholar
  • 25. D. L. Swofford 2000. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4b10. Sinauer Associates. Sunderland, Massachusetts. Google Scholar
  • 26. E. Tchernov and Y. Yom-Tov . 1988. Zoogeography of Israel. Pp 1–6. in The zoogeography of Israel. Y. Yom-Tov and E. Tchernov , editors. eds. Dr. W. Junk Publishers. Dordrecht, Netherlands. 600. pp. Google Scholar
  • 27. T. Tregenza 2002. Divergence and reproductive isolation in the early stages of speciation. Genetica 116:291–300. Google Scholar
  • 28. V. Van Cakenberghe and F. de Vree . 1994. A revision of the Rhinopomatidae Dobson 1872, with the description of a new subspecies. Senkenbergiana biologica 73:45–62. Google Scholar

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8d129652-49fd-4549-98ed-a8e62124229c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.