PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 01 |

Tytuł artykułu

Improved germination bioassays for allelopathy research

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A new method for germination bioassays in allelopathy was evaluated. Inspired by pharmacology, allelochemical quantity to test on different target seeds was calculated according to seeds biometry. The first step consisted in measuring volume, mass, surface and shape of Lactuca sativa and Raphanus sativus seeds. The radish seed mass, surface, volume and contact area biometric parameters were respectively 10, 2, 6 and 1.7 that of lettuce. Two germination bioassay sets were compared: (i) a conventional one, testing the same concentration of allelochemical (2-benzoxazolinone termed as ‘‘BOA’’) on the two species and, (ii) a biometrics enhanced seed test (‘‘BEST’’ method), employing quantities of the chemical that were calculated in proportion to seed biometry parameters. The conventional method indicated that 1 mM BOA slowed and decreased germination rate (radish 50 %, lettuce 10 %) whereas 10 and 0.1 lM did not induce any effect. The BEST method offered more differentiated results: applied BOA according to seed volume induced significant inhibition of radish germination (both quantities), while lettuce was only affected by the highest dose. The same occurred when considering grain surface and contact area. Thus, the BEST assay showed more clearly that radish was more sensitive to BOA than lettuce. Compared to a setup with identical test compound concentrations for all tested species, the BEST method provides more differentiated results contributing to a more realistic comparative susceptibility assessment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

01

Opis fizyczny

p.23-30,fig.,ref.

Twórcy

  • Laboratoire d’Ecologie Alpine, CNRS UMR 5553, Universite De Savoie, 73376 Le Bourget-Du-Lac Cedex, France

Bibliografia

  • Abdelgaleil SAM, Hashinaga F (2007) Allelopathic potential of two sesquiterpene lactones from Magnolia grandiflora L. Biochem Syst Ecol 35:737–742
  • Belz RG (2007) Allelopathy in crop/weed interactions—an update. Pest Manag Sci 63:308–326
  • Blair AC, Weston LA, Nissen SJ, Brunk GR, Hufbauer RA (2009) The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biol Invasions 11:325–332
  • Cerda A, Garcia-Fayos P (2002) The influence of seed size and shape on their removal by water erosion. Catena 48:293–301
  • Chiapusio G, Pellissier F (2001) Methodological setup to study allelochemical translocation in radish seedlings. J Chem Ecol 27:1701–1712
  • Chiapusio G, Sanchez AM, Reigosa MJ, Gonzalez L, Pellissier F (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23:2445–2453
  • Chiapusio G, Pellissier F, Gallet C (2004) Uptake and translocation of phytochemical 2-benzoxazolinone (BOA) in radish seeds and seedlings. J Exp Bot 55:1587–1592
  • de Almeida LFR, Frei F, Mancini E, De Martino L, De Feo V (2010) Phytotoxic activities of mediterranean essential oils. Molecules 15:4309–4323
  • Derendorf H, Lesko LJ, Chaikin P, Colburn WA, Lee P, Miller R, Powell R, Rhodes G, Stanski D, Venitz J (2000) Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 40:1399–1418
  • Dias LS (2001) Describing phytotoxic effects on cumulative germination. J Chem Ecol 27:411–418
  • Erhard D (2006) Allelopathy in aquatic environments. In: Pedrol N, Gonzalez L, Reigosa MJ (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 433–450
  • Fageria NK, Stone LF (2006) Physical, chemical, and biological changes in the rhizosphere and nutrient availability. J Plant Nutr 29:1327–1356
  • Fagundez J, Izco J (2010) Seed morphology of the European species of Erica L. sect. Arsace Salisb. ex Benth. (Ericaceae). Acta Botanica Gallica 157:45–54
  • Firatligil-Durmus E, Sarka E, Bubnik Z, Schejbal M, Kadlec P (2010) Size properties of legume seeds of different varieties using image analysis. J Food Eng 99:445–451. doi:10.1016/j.jfoodeng.2009.08.005
  • Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39
  • Huang XQ, Lepiller V, Bailly Y, Guermeur F, Herve P (2012) Particle sizing and velocity measurement of microspheres from the analysis of polarization of the scattered light. Opt Lasers Eng 50:57–63
  • Jain RK, Bal S (1997) Properties of pearl millet. J Agric Eng Res 66:85–91. doi:10.1006/jaer.1996.0119
  • Kadioglu I, Yanar Y, Asav U (2005) Allelopathic effects of weeds extracts against seed germination of some plants. J Environ Biol 26:169–173
  • Kato-Noguchi H, Macias FA (2008) Inhibition of germination and alpha-amylase induction by 6-methoxy-2-benzoxazolinone in twelve plant species. Biol Plant 52:351–354
  • Kocacaliskan I, Terzi I (2001) Allelopathic effects of walnut leaf extracts and juglone on seed germination and seedling growth. J Horticult Sci Biotechnol 76:436–440
  • Kordali S, Cakir A, Sutay S (2007) Inhibitory effects of monoterpenes on seed germination and seedling growth. Zeitschrift Fur Naturforschung C-J Biosci 62:207–214
  • Krohn NG, Ferree DC (2005) Effects of low-growing perennial ornamental groundcovers on the growth and fruiting of ‘Seyval blanc’ grapevines. HortScience 40:561–568
  • Lehman ME, Blum U (1999) Evaluation of ferulic acid uptake as a measurement of allelochemical dose: effective concentration. J Chem Ecol 25:2585–2600. doi:10.1023/a:1020838611441
  • Macias FA, Castellano D, Molinillo JMG (2000) Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J Agric Food Chem 48:2512–2521
  • Mao LX, Henderson G, Laine RA (2004) Germination of various weed species in response to vetiver oil and nootkatone. Weed Technol 18:263–267
  • Martinez-Otero A, Gonzalez L, Reigosa MJ (2005) Oxygen electrode for seedling metabolism measurements in allelopathy. Allelopathy J 16:95–103
  • Mutlu S, Atici O (2009) Allelopathic effect of Nepeta meyeri Benth. extracts on seed germination and seedling growth of some crop plants. Acta Physiologiae Plantarum 31:89–93
  • Oh IC, Anderberg AL, Schonenberger J, Anderberg AA (2008) Comparative seed morphology and character evolution in the genus Lysimachia (Myrsinaceae) and related taxa. Plant Syst Evol 271:177–197
  • Pedrol N, Gonzalez L, Reigosa MJ (2006) Allelopathy and abiotic stress. In: Reigosa MJ, Pedrol N, Gonzalez L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 171–209
  • Pellissier F (1993) Allelopathic inhibition of spruce germination. Acta Oecologica-Int J Ecol 14:211–218
  • Pellissier F, Souto XC (1999) Allelopathy in northern temperate and boreal semi-natural woodland. Crit Rev Plant Sci 18:637–652
  • Pollux BJA, De Jong M, Steegh A, Ouborg NJ, Van Groenendael JM, Klaassen M (2006) The effect of seed morphology on the potential dispersal of aquatic macrophytes by the common carp (Cyprinus carpio). Freshw Biol 51:2063–2071
  • Prati D, Bossdorf O (2004) Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am J Bot 91:285–288
  • Rabotnov TA (1981) Importance of the evolutionary approach to the study of allelopathy. Sov J Ecol 12:127–130
  • Rashid MH, Asaeda T, Uddin MN (2010) The allelopathic potential of kudzu (Pueraria montana). Weed Sci 58:47–55
  • Reigosa MJ, Gonzalez L (2006) Forest ecosystems and allelopathy. In: Reigosa MJ, Pedrol N, Gonzalez L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 451–463
  • Reigosa MJ, Pazos-Malvido E (2007) Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J Chem Ecol 33:1456–1466
  • Reigosa MJ, Gonzalez L, Sanches-Moreiras A, Duran B, Puime D, Fernandez DA, Bolano JC (2001) Comparison of physiological effects of allelochemicals and commercial herbicides. Allelopath J 8:211–220
  • Sharma V, McNeill JH (2009) To scale or not to scale: the principles of dose extrapolation. Br J Pharmacol 157:907–921
  • Shigemori H (2010) Bioactive substances involved in life cycle of higher plants. J Synth Org Chem Jpn 68:551–562
  • Sinkkonen A (2001) Density-dependent chemical interference—an extension of the biological response model. J Chem Ecol 27:1513–1523
  • Sinkkonen A (2007) Modelling the effect of autotoxicity on densitydependent phytotoxicity. J Theor Biol 244:218–227
  • Souto C, Pellissier F, Chiapusio G (2000) Allelopathic effects of humus phenolics on growth and respiration of mycorrhizal fungi. J Chem Ecol 26:2015–2023
  • Tackenberg O, Romermann C, Thompson K, Poschlod P (2006) What does diaspore morphology tell us about external animal dispersal? Evidence from standardized experiments measuring seed retention on animal-coats. Basic Appl Ecol 7:45–58
  • Weidenhamer JD (2006) Distinguishing allelopathy from resource competition: the role of density. Allelopathy: a physiological process with ecological implications: 85–103. doi:10.1007/1-4020-4280-9_4
  • Williamson GB, Richardson D (1988) Bioassays for allelopathy— measuring treatment responses with independent controls. J Chem Ecol 14:181–187
  • Willis RJ (1985) The historial bases of the concept of allelopathy. J History Biol 18:71–102
  • Willis RJ (2000) Juglans Spp, Juglone and allelopathy. Allelopathy J 7:1–55
  • Zhang Y, Gu M, Shi K, Zhou YH, Yu JQ (2010) Effects of aqueous root extracts and hydrophobic root exudates of cucumber (Cucumis sativus L.) on nuclei DNA content and expression of cell cycle-related genes in cucumber radicles. Plant Soil 327:455–463

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8b64ea3e-eec2-49a1-9065-d0e6f32a71fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.