PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 13 | 2 |

Tytuł artykułu

Environmental components and boundaries of morphological variation in the short-tailed fruit bat (Carollia spp.) in Ecuador

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Species in Carollia, although loosely recognizable by size and shape, show overlap in most morphological character states as well as in geographic distribution and use of resources. However, there is a lack of understanding regarding where and what this overlap is. Variation in the morphology of Carollia should correspond to the environment, yet such patterns remain unknown. Species may coexist as a function of environmental factors and sympatry may not be uniform along the distributional extent of these species. An informed perception of the morphological and ecological variation across their geographic range may clarify not only the limits and extents of their spatial and morphological boundaries, but also may provide insights into the relationships among size, shape and environment. In our quantitative analysis of the variation in morphology and environment we tried to answer what limits species distribution, as well as how morphology changes with the environment within and among species. A combination of multivariate contrasts and partial least square analyses were used to assess the correlations and interactions between size, shape, distribution and environment among C. castanea (small), C. brevicauda (medium) and C. perspicillata (large size) in Ecuador. We show how the three Carollia species vary and differentiate along an ecomorphological space of gradients, barriers, size and shape. From a macroecological perspective, and contrary to the theory of limiting similarity, the smallest species is the most distinct in its environmental space and also the one that experiences the strongest changes in shape across geographic regions. The other two more similar species, in both size and shape, show a larger overlap in their environmental space. This seems to suggest that size can act as a buffer in extreme or changing environments and that higher gene flow is more probable for larger high-altitude species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

2

Opis fizyczny

p.319-340,fig.,ref.

Twórcy

autor
  • Estacion Cientifica Yasuni, Escuela de Ciencias Biologicas, Pontificia Universidad Catolica del Ecuador, Apartado 17-01-2184 Quito, Ecuador
  • Center for Ecology and Conservation Biology, Department of Biology, Boston University, #5 Cummington Street, Boston MA 02215, USA
  • Museo de Zoologia, Centro de Biodiversidad y Ambiente, Escuela de Ciencias Biologicas, Pontificia Universidad Catolica del Ecuador, Apartado 17-01-2184 Quito, Ecuador
  • Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA

Bibliografia

  • Albuja, V. L. 1999. Murciélagos del Ecuador, 2nd edition. Cicetrónic Cía Ltda., Offset, Quito, 288 pp.
  • Anderson, S. 1993. Los mamíferos de Bolivia: notas de distribución y claves de identificación. Publicación Especial del Instituto de Ecología (CBF), La Paz, 157 pp.
  • Arita, H. T. 1993. Rarity in Neotropical bats: correlations with phylogeny, diet, and body mass. Ecological Applications, 3: 506-517.
  • Ascorra, C. F., S. Solari, T., and D. E. Wilson. 1996. Diversidad y ecología de los quirópteros en Pakitza. Pp. 593- 612, in Manu, the biodiversity of southeastern Peru (D. E. Wilson and A. Sandoval, eds.). Office of Biodiversity Programs, Smithsonian Institution, Washington D.C., 679 pp.
  • Baquero, F., R. Sierra, L. Ordoñez, M. Tipán, L. Espinoza, M. B. Rivadeneira, and P. Soria. 2005. La vegetación de los Andes del Ecuador. Memoria explicativa de los mapas de vegetación potencial y remanente a escala 1:250.000 y del modelamiento predictivo con especies indicadoras. EcoCiencia, CESLA, Corporación EcoPar, MAGSIGAGRO, CDC-Jatún Sacha y División Geográfica IGM, Quito.
  • Barclay, R. M. R. 1991. Population structure of temperate zone insectivorous bats in relation to foraging behavior and energy demand. Journal of Animal Ecology, 60: 165-178.
  • Barquez, R. M. 1988. Notes on identity, distribution, and ecology of some Argentine bats. Journal of Mammalogy, 69: 873-876.
  • Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, New York, 435 pp.
  • Boone, R. B., K. A. Galvin, N. Smith, and S. Lynn. 2000. Generalizing El Niño effects upon Maasai livestock using hierarchical clusters of vegetation patterns. Photogrammetric Engineering & Remote Sensing, 66: 737-744.
  • Buermann, W., S. Saatchi, C. H. Graham, B. R. Zutta, J. A. Chaves, B. Milá, and T. B. Smith. 2008. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. Journal of Biogeography, 35: 1160-1176.
  • Busby, H. A. 1991. BIOCLIM, a bioclimatic analysis and prediction system. Plant Protection Quarterly, 6: 8-9.
  • Calder, W. A. III. 1984. Size, function, and life history. Harvard University Press, Cambridge, Massachusetts, 431 pp.
  • Ceballos, G., J. Arroyo-Cabrales, and R. A. Medellín. 2002. The mammals of Mexico: composition, distribution, and conservation status. Occasional Papers, The Museum of Texas Tech University, 218: 1-27.
  • Cherem, J. J., P. C. Simões-Lopes, S. Althoff, and M. E. Graipel. 2004. Lista dos mamíferos do estado de Santa Catarina, Sul do Brasil. Mastozoologia Neotropical, 11: 151-184.
  • Clutton-Brock, T. H., and P. H. Harvey. 1983. The functional significance of variation in body size among mammals. Pp. 632-663, in Advances in the study of mammalian behavior (J. F. Eisenberg, and D. G. Kleiman, eds.). Special Publication of the American Society of Mammalogists, 7: 1-753.
  • Cohen, J. 1988. Statistical power analysis for the behavioral sciences, 2nd edition. Lawrence Erlbaum Associates, Inc., New Jersey, 567 pp.
  • Cohen, J. 1994. The Earth is round (P < 0.05). American Psychologist, 49: 997-1003.
  • Dryden, I. L., and K. V. Mardia. 1998. Statistical shape analysis. Wiley & Sons, Sussex, 376 pp.
  • Dumont, E. R. 1999. The effect of food hardness on feeding behaviour in frugivorous bats (Phyllostomidae): an experimental study. Journal of the Zoological Society of Washington, 248: 219-229.
  • Dumont, E. R., J. Piccirillo, and I. R. Grosse. 2005. Finite-element analysis of biting behavior and bone stress in the facial skeletons of bats. The Anatomical Record, 283A: 319-330.
  • Eisenberg, J. F., and K. H. Redford. 2000. Mammals of the Neotropics, Volume 3: Ecuador, Bolivia, Brazil. University of Chicago Press, Chicago, 624 pp.
  • Emmons, L. H., and F. Feer. 1997. Neotropical rainforest mammals, a field guide, 2nd edition. University of Chicago Press, Chicago, 307 pp.
  • Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf. 2007. The shuttle radar topography mission. Review of Geophysics, 45: RG2004 [doi: 10.1029/2005RG000183],
  • Fleming, T. H. 1988. The short-tailed fruit bat: a study in plantanimal interactions. University of Chicago Press, Chicago, 365 pp.
  • Fleming, T. H. 1991. The relationship between body size, diet, and habitat use in frugivorous bas, genus Carollia (Phyllostomidae). Journal of Mammalogy, 72: 493-501.
  • Frolking, S., T. Milliman, K. McDonald, J. Kimball, M. Zhao, and M. Fahnestock. 2006. Evaluation of the sea- winds scatterometer for regional monitoring of vegetation phenology. Journal of Geophysical Research, 111, D17302. doi:10.29/2005JD006588.
  • Giannini, N. P. 1999. Selection of diet and elevation by sympatric species of Sturnira in an Andean rainforest. Journal of Mammalogy, 80: 1186-1195.
  • Hall, E. R. 1981. The mammals of North America, 2nd edition. John Wiley and Sons, New York, 248 pp.
  • Hammer, Ø., and D. A. T. Harper. 2001. PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 1-9.
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, R. A. Sohlberg, C. Dimiceli, and M. Carroll. 2002. Towards an operational MODIS continuous field of percent tree cover algorithm: examples using AVHRR and MODIS data. Remote Sensing of Environment, 83: 303-319.
  • Harestad, A. S., and F. L. Bunnell. 1979. Home range and body weight - a reevaluation. Ecology, 60: 389-402.
  • Humans, R. J., S. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005a. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965-1978.
  • Hijmans, R. J., L. Guarino, A. Jarvis, R. O'Brien, P. Mathur, C. Bussink, M. Cruz, I. Barrantes, and E. Rojas. 2005b. DIVA-GIS. Version 5.2. A geographic information system for the analysis of species distribution data. Manual available at http://www.diva-gis.org.
  • Hoffman, F. G., and R. J. Baker. 2003. Comparative phylo- geography of short-tailed bats (Carollia: Phyllostomidae). Molecular Ecology, 12: 3403-3414.
  • Hutchinson, E. G. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist, 93: 145-161.
  • Jarrín-V., P. 2003. An unusual record of Peropteryx macrotis in the Andean highlands of Ecuador. Mammalia, 67: 613-615.
  • Jarrín-V. P., C. Flores-C., and J. Salcedo-Q. 2010. Morphological variation in the short-tailed Fruit Bat (Carollia) in Ecuador, with comments on the practical and philosophical aspects of boundaries among species. Integrative Zoology, 5: 226-240.
  • Kendall, D. G., D. Barden, T. K. Carne, and H. Le. 1999. Shape and shape theory. John Wiley & Sons, Ltd., New York, 306 pp.
  • Koopman, K. F. 1982. Biogeography of the bats of South America. Pp. 273-302, in Mammalian biology in South America (M. A. Mares and H. H. Genoways, eds.). Special Publication Series, Pymatuning Laboratory of Ecology, University of Pittsburgh, Pittsburgh, 539 pp.
  • Lim, B. K., and M. D. Engstrom. 1998. Phylogeny of Neotropical short-tailed fruit bats, Carollia spp. Phylogenetic analysis of restriction site variation in mtDNA. Pp. 43-58, in Bat biology and conservation (T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington D.C, 384 pp.
  • Loayza-Freire, A. 2002. Ecology and movement of frugivorous bats within a naturally fragmented landscape in the Beni Biological Station-Biosphere Reserve, Bolivia. Ph.D. Thesis, University of Missouri, St. Louis, 87 pp.
  • Lomolino, M. V. 2005. Body size evolution in insular vertebrates: generality of the island rule. Journal of Biogeography, 32: 1683-1699.
  • Long, D. G., M. R. Drinkwater, B. Holt, S. Saatchi, and C. Bertoia. 2001. Global ice and land climate studies using scatterometer image data. EOS, Transactions of the American Geophysical Union, 82: 503.
  • Martin, A. P., and S. R. Palumbi. 1993. Body size, metabolic rate, generation time, and the molecular clock. Proceedings of the National Academy of Sciences of the USA, 90: 4087-4091.
  • Medellín, R. A. 1994. Mammal diversity and conservation in the Selva Lacandona, Chiapas, Mexico. Conservation Biology, 8: 780-799.
  • Medellín, R. A., M. Equihua, and M. A. Amin. 2000. Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology, 14: 1666-1675.
  • Monteiro, L. R. 2000. Why morphometries is special: the problem with using partial warps as characters for phylogenetic inference. Systematic Biology,49: 796-800.
  • Muñoz-Saba, Y., H. F. López-Arévalo, and A. Cadena-G. 1999. Aportes al conocimiento de la ecología de los murciélagos de los afloramientos de mármoles y calizas, sector de Río Claro (Antioquia, Colombia). Revista de la Academia Colombiana de Ciencias Exáctas y Naturales, Suplemento Especial, 23: 652-658.
  • Myneni, R. B., S. Hoffman, Y. Knyazikhin, J. L. Privette, J. Glassy, Y. Tian, Y. Wang, X. Song, Y. Zhang, G. R. Smith, A. Lotsch, M. Friedl, J. T. Morisette, P. Votava, R. R. Nemani, and S. W. Running. 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83: 214-231.
  • Nunn, G. B., and S. E. Stanley. 1998. Body size effects and rates of cytochrome b evolution in tube-nosed seabirds. Molecular Biology and Evolution, 15: 1360-1371.
  • Olson, C. L. 1974. Comparative robustness of six tests in multivariate analysis of variance. Journal of the American Statistical Association, 69: 894-908.
  • Pearson, R. G., and T. P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?.Global Ecology and Biogeography, 12: 361-371.
  • Peters, R. H. 1983. The ecological implications of body size. Cambridge Studies in Ecology. Cambridge University Press, Cambridge, 329 pp.
  • Pine, R. H. 1972. The bats of the genus Carollia. Technical Monographs 8. Texas Agricultural Experimental Station, 8: 1-125 pp.
  • Quinn, G. P., and M. J. Keough. 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, 537 pp.
  • Rohlf, F. J. 1993. Relative warp analysis and an example of its application to the analysis of mosquito wings. Pp. 131- 159, in Contributions to morphometries (L. F. Marcus, E. Bello, and A. García Valdecasas, eds.). Museo Nacional de Ciencias Naturales (CSIC), Madrid, 8: 1-264.
  • Rohlf, F. J. 1998. On applications of geometric morphometries to studies of ontogeny and phylogeny. Systematic Biology, 47: 147-158.
  • Rohlf, F. J. 2006. tpsPLS version 1.18. Ecology & Evolution, SUNY at Stony Brook, http://life.bio.sunysb.edu/morph/.
  • Rohlf, F. J., and F. L. Bookstein. 2003. Computing the uniform component of shape variation. Systematic Biology, 53: 66-69.
  • Root, T. 1988a. Energy constraints on avian distributions and abundances. Ecology, 69: 330-339.
  • Root, T. 1988b. Environmental factors associated with avian distributional boundaries. Journal of Biogeography, 15: 489-505.
  • Schmidt-Nielsen, K. 1984. Scaling. Why is animal size so important? Cambridge University Press, Cambridge, 241 pp.
  • Simmons, N. B. 2005. Order Chiroptera. Pp. 312-529, in Mammal species of the World: a taxonomic and geographic reference, 3rd edition (D. E. Wilson and D. M. Reeder, eds.). Smithsonian Institution Press, Washington D.C., 2142 pp.
  • Solari, S., V. Pacheco, L. Luna, P. M. Velazco, and B. D. Patterson. 2006. Mammals of the Manu Biosphere Reserve. Fieldiana: Zoology (N.S.), 110: 13-22.
  • Sterne, J. A. C., and G. D. Smith. 2001. Sifting the evidence- what's wrong with significance tests? Physical Therapy, 81: 1464-1469.
  • Stevens, J. P. 2002. Applied multivariate statistics for the social sciences, 4th edition. Lawrence Erlbaum Associated Publishers, London, 699 pp.
  • Strait, S. G. 1993. Molar morphology and food texture among small-bodied insectivorous mammals. Journal of Mammalogy, 74: 391-402.
  • Tirira, D. S. 1999. Mamíferos del Ecuador. Publicación Especial, Museo de Zoología, Centro de Biodiversidad y Ambiente, Pontificia Universidad Católica del Ecuador, 2: 1-392.
  • Tucker, C. J., C. Vanpraet, E. Boerwinkel; and A. Gaston. 1983. Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sensing of Environment, 13: 461-474.
  • Turner, W., S. Spector, N. Gardiner, M. Fladeland, E. Sterling, and M. Steininger. 2003. Remote sensing for biodiversity science and conservation. Trends in Ecology and Evolution, 18: 306-314.
  • Ulrich, W., K. Sachanowicz, and M. Michalak. 2007. Environmental correlates of species richness of European bats (Mammalia: Chiroptera). Acta Chiropterologica, 9: 347-360.
  • York, H. A., and M. Papes. 2007. Limiting similarity and species assemblages in the short-tailed fruit bats. Journal of Zoology (London), 273: 249-256.

Uwagi

PL

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8a9a953c-3641-486f-8703-796f72e5c1f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.