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Abstract Absorption coefficient partitioning algorithms (APAs) were developed to partition 
the total absorption coefficient ( a (λ) ) or total non-water absorption coefficient ( a nw (λ)) into 
the absorption subcomponents, i.e., absorption due to phytoplankton a ph (λ) , colored dissolved 
organic matter (CDOM) a g (λ) and non-algal particulate matter a d (λ) , λ is the wavelength. Ab- 
sorption coefficients of CDOM and non-algal particulate matter are generally combined due to a 
similarity in exhibited spectral shape and represented as colored detrital matter (CDM) absorp- 
tion coefficient, a dg (λ) . This study focuses on the applicability of five APAs Schofield’s, Lin’s, 
Zhang’s, Stacked Constraints Model (SCM) and Generalized Stacked Constraints Model (GSCM), 
in deriving the absorption subcomponents from a nw (λ) in optically complex coastal waters of 
Kochi and Goa, India. The average spectral Mean Absolute Percentage Errors (MAPE) obtained 
for all models in the retrieval of a ph (λ) , a d (λ) , a g (λ) and a dg (λ) lie in the ranges of 26—44%, 
37—45%, 34—65% and 42—56%. Slopes of a dg (λ) , a g (λ) and a d (λ) as indicated by S dg , S g and S d 
are derivable from GSCM, Schofield and Lin’s models only. GSCM model exhibited good retrieval 
capability of S d with MAPE values of 22% and a correlation coefficient of 0.74. In retrieval of 
S g parameter, none of the models demonstrated satisfactory performance. Overall, the GSCM 

and Schofield’s models demonstrated good performance in the retrieval of absorption subcom- 
ponents, a ph (λ) , a dg (λ) , a d (λ) and S d . Effect of applying baseline correction to a d (λ) on model 
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performance is studied. Tuning with in situ data can further improve the absorption subcompo- 
nent and slope parameter retrieval capability of the models. 
© 2021 Institute of Oceanology of the Polish Academy of Sciences. Production and host- 
ing by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

he optical properties of dissolved and particulate mate- 
ials are known as Inherent Optical Properties (IOPs). IOPs 
re independent of the light field and are dependent on 
he substances present in the aquatic medium. Along with 
he incoming light field at the water surface, IOPs deter- 
ine the light field’s availability in the ocean. Total spec- 
ral light absorption coefficient a (λ) [m 

−1 ] is one of the 
idely studied IOPs of an aquatic medium ( λ denotes wave- 
ength) ( Zaneveld, 2013 ). In all-natural waters except in wa- 
ers of extreme turbid nature 1 , a (λ) can be expressed as 
he sum of absorptions from the optically significant sub- 
tances (OSC), i.e., phytoplankton a ph (λ) [m 

−1 ], non-algal 
articulate matter (NAP) a d (λ) [m 

−1 ] and colored dissolved 
rganic matter (CDOM) a g (λ) [m 

−1 ] and water a w (λ) [m 

−1 ] 
tself ( Twardowski et al., 2018 ). The OSCs modify the light 
eld available in the upper parts of the ocean and play 
n essential role in the biological and biogeochemical pro- 
esses. Phytoplankton absorbs light for photosynthesis (pri- 
ary production) wherein the light is converted to chem- 

cal energy and inorganic carbon to organic carbon. They 
orm the base of the aquatic food chain and regulate CO 2 

xchanges between the atmosphere and ocean along with 
ther physical processes ( Brewin et al., 2015 ; Zheng and 
tramski, 2013a ). Phytoplankton absorption is used to cal- 
ulate phytoplankton productivity and provides informa- 
ion on chlorophyll- a concentration ( Bricaud et al., 1998 ). 
urther, information about the phytoplankton community 
tructure, taxonomy and size classes based on the absorp- 
ion properties of pigments present in different groups 
an be derived from phytoplankton absorption ( Ciotti and 
ricaud, 2006 ; Ciotti et al., 2002 ; Uitz et al., 2008 ). The
oncentration of CDOM, the colored part of the dissolved 
rganic matter (DOM), represents a dynamic part of the dis- 
olved organic carbon pool and drives aquatic photochem- 
stry with implications to biogeochemical processes such as 
arbon cycling. CDOM influences the upper water column 
hoto processes and affects light and nutrient availability 
 Twardowski et al., 2004 ). CDOM, along with the non-algal 
articulate matter present in the water, absorbs the blue 
avelengths of the visible spectrum and affects the photo- 
ynthesis of phytoplankton. CDOM exhibits a distinct spec- 
ral variability based on its source (terrestrial and marine- 
1 The additive nature of IOPs is valid with an assumption that the 
SC in water medium are discrete. The term “Discrete” refers to 
articles not being too close in proximity, typically must be sepa- 
ated by at least three times the radii of particles or interference 
n scattering properties. This condition is fulfilled in natural waters 
xcept in extremely turbid waters, where the suspended particles 
re very close to each other, thereby additive nature of IOPs does 
ot hold true ( Twardowski et al., 2018 ) . 
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erived) and different degradation pathways like micro- 
ial or photodegradation ( Grunert et al., 2018 ). In coastal 
aters, the CDOM absorption and CDOM slope coefficient 

 S g ) exhibit distinct spectral features that provide informa- 
ion on the degradation state and presence of terrestrial 
iomarkers. NAP refers to particulate material that does 
ot have extractable pigments. It includes all living and 
rganic matter such as non-pigmented portion of phyto- 
lankton cells, detritus, heterogenic bacteria, viruses and 
inerogenic particles. It also includes inorganic material 
f both biogenic (e.g., calcite liths and shells) and terres- 
rial origin (e.g., sand, silts and clay) ( Mobley, 2010 ). NAP 
lays a key role in remineralisation and particulate matter 
ovement ( Zheng and Stramski, 2013a ). The measurements 
f the a d and a g are essential in coastal regions especially, 
here both CDOM and NAP do not covary necessarily with 
hlorophyll- a concentration owing to coastal upwelling and 
iverine input of terrestrial organic and non-organic matter. 
With technological advancements in optical sensors and 

evices, the absorption measurements of a (λ) or total non- 
ater absorption coefficient, a nw (λ) (total absorption coef- 
cient after removal of the pure water absorption coeffi- 
ient, a w (λ) ) can be derived or measured from various plat- 
orms such as satellites, in situ moorings, autonomous un- 
erwater vehicles and flow-through devices. The pure wa- 
er absorption coefficient is assumed to be known within 
% in the visible wavelength range ( Mason et al., 2016 ; 
ope and Fry, 1997 ). Along with traditional filter pad ab- 
orption methods, devices like ac-9 ( ac Meter Protocol Doc- 
ment, 2011 ), ac-s ( Freeman, 2012 ), absorption sphere (a- 
phere) ( Dana and Maffione, 2006 ), Point Source Integrat- 
ng Cavity Absorption Meter (PSICAM) ( Röttgers et al., 2007 ) 
nd flow-through PSICAM ( Wollschläger et al., 2013 ) are ca- 
able of providing multispectral and hyperspectral absorp- 
ion measurements in visible wavelength region with a high 
pectral resolution of ∼1 nm. 
Absorption coefficient partitioning algorithms (APAs) 

ere developed to partition a (λ) or a nw (λ) derived either 
rom satellite imagery or absorption measurement de- 
ices. One category of APAs partition a nw (λ) or a (λ) into 
 ph (λ) , a d (λ) , a g (λ) ( Lin et al., 2013 ; Schofield et al.,
004 ; Zheng et al., 2015 ) or into a ph (λ) and a dg (λ) , the
ombined absorption coefficient of CDOM and NAP ma- 
erial, hereafter referred to as colored detrital matter 
CDM) ( Ciotti and Bricaud, 2006 ; Oubelkheir et al., 2007 ; 
oesler et al., 1989 ; Zhang et al., 2015 ). APAs have been
sed to study the spatiotemporal variations in phytoplank- 
on size classes ( Zhang et al., 2015 ), CDOM absorption 
oefficient at global scales ( Bricaud et al., 2012 ) and in the
etrieval of chlorophyll- a concentration in complex estuar- 
es ( Zheng and Digiacomo, 2017 ). Although the existing APAs 
ere validated over waters covering a wide range of optical 
roperties, their applicability to coastal, estuarine and 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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omplex estuarine systems needs to be assessed for every 
egion. Hence, the present study focuses on the applicabil- 
ty of these APAs in deriving the absorption subcomponents 
rom a nw (λ) measured in coastal waters of Kochi and Goa, 
ndia. In addition to the magnitude of the absorption coeffi- 
ients, the slope coefficients S g , S d and S dg derived from the 
odels that correspond to the shapes of the a g (λ) , a d (λ) 
nd a dg (λ) were compared. The five APAs evaluated are 1) 
chofield’s model ( Schofield et al., 2004 ); 2) Lin’s model 
 Lin et al., 2013 ); 3) Stacked Constraints Model ( Zheng and 
tramski, 2013a ); 4) Generalized Stacked Constraints Model 
 Zheng et al., 2015 ) and 5) Zhang’s model ( Zhang et al.,
015 ). The five APA’s follow different methodologies for 
etrieving the absorption subcomponents involving op- 
imization, linear matrix inversion and constraint-based 
pproaches. Further, the two sites (Kochi and Goa) differ in 
heir optical characteristics due to the presence of the OSCs 
n various concentrations and compositions. Statistical in- 
icators like mean absolute percentage error (MAPE), mean 
bsolute error (MAE), root mean square deviation (RMSD) 
tc. were used for comparison of the APAs to assess their 
apability in the retrieval of absorption subcomponents 
rom a nw (λ) measured in optically complex waters. 

. Data and methods 

.1. Data 

he data used for comparing the performance of absorp- 
ion decomposition algorithms were collected under the 
atellite Coastal and Oceanographic Research (SATCORE) 
rogram by Indian National Centre for Ocean Information 
ervices (INCOIS), Hyderabad, India ( Lotliker et al., 2016 ). 
nder this program, the IOP data was collected at vari- 
us coastal waters around India. For the present study, co- 
ncident measurements of the absorption subcomponents, 
 ph (λ) , a d (λ) and a g (λ) were obtained in the wavelength 
ange of 350—750 nm. The locations of sampling sites are 
hown in Figure 1 . 
Water samples were collected from the coastal waters 

f Kochi from January to December 2010—2013 (except July 
wing to a peak of southwest monsoon and associated high 
ater current) ( Souda et al., 2020 ). CDOM absorption coeffi- 
ient, a g (λ) was measured spectrophotometrically following 
he procedure of Kowalczuk and Kaczmarek (1996) . Briefly, 
ater samples were filtered through a 0.2- μm cellulose ni- 
rate membrane filter. Using Milli-Q type-I water as a blank, 
ample transparency was measured in 10-cm quartz cuvette 
n Shimadzu double-beam UV-2450 spectrophotometer in 
00—750 nm wavelength range at 1-nm resolution. 
Measured optical density (OD) is converted to a g (λ) us- 

ng Eq. (1) . Correction for scattering due to small particles 
nd colloids that pass through filter paper is performed by 
ubtracting a g ( 750 ) from the entire spectrum ( Green and 
lough, 1994 ). The spectral absorption coefficient was nor- 
alized with respect to 440 nm, given as Eq. (2) 

 g ( λ) = 2 . 303 x OD ( λ) x 100 
[
m 

−1 ] (1) 

 g ( λ) = a g ( 440 ) x exp 
[−S g ( λ − 440 ) 

][
m 

−1 ] (2) 
422 
here L is cuvette length in m, S g is calculated by fitting 
 nonlinear exponential model between a g (λ) and wave- 
engths in the 400—750 nm range ( Bricaud et al., 1981 ; 
as et al., 2017 ; Twardowski et al., 2004 ) using a MATLAB
ode ( Boss, 2014 ). For a p (λ) measurements, quantitative 
lter technique (QFT) was followed ( Kishino et al., 1985 ; 
itchell, 1990 ). Water samples were filtered through What- 
an GF/F membrane filters with 25 mm diameter and 0.7 
m pore size. The optical density is measured using Shi- 
adzu double-beam UV-2450 spectrophotometer from 400—
50 nm range with 1 nm resolution (90% acetone as blank). 
bsorption due to NAP ( a d (λ) ) measurements were made 
fter depigmentation of filtrate by using methanol. Fol- 
owing equations were used to calculate a ph (λ) , a d (λ) and 
 ph (λ) : 

 D s ( λ) = 0 . 378 O D f ( λ) + 0 . 523 
[
O D f ( λ) 

]2 (3) 

 p ( λ) = 

[ 2 . 303 x O D s ( λ) ] 
V 
S a 

[
m 

−1 ] (4) 

 d ( λ) = 

[ 2 . 303 x O D s ( λ) ] 
V 

S a 

[
m 

−1 ] ( after depigmentation ) (5) 

 ph ( λ) = a p ( λ) − a d ( λ) (6) 

here O D s (λ) is the optical density of the particulate mat- 
er and NAP in suspension, O D f (λ) is the optical density of 
he particulate matter and NAP in a filter, V is filtration 
olume in m 

3 , S a is filtration area in m 

2 . The coefficients 
n Eq. (3) are path length correction factors ( β factors) 
sed to correct for multiple scattering in the glass fibre fil- 
ers ( Cleveland and Weidemann, 1993 ; Kyewalyanga et al., 
998 ). A detailed description of IOP measurements in Kochi 
oastal waters is presented in Minu et al. (2016 , 2015 , 2014 )
nd Souda et al. (2020) . In the case of Goa coastal wa-
ers, the same procedure is followed (as in Kochi) for ob- 
aining the absorption coefficients but with Shimadzu UV- 
550 spectrophotometer (Shimadzu Corporations, Japan) 
 Menon et al., 2005 ; Menon and Adhikari, 2018 ). The Goa
ite’s IOP data were collected during March, May, Septem- 
er, October, November and December of 2013. The number 
f sample points from Kochi and Goa sites are 104 and 27, 
espectively. 
Spectral absorption subcomponents, a ph , a d and a g col- 

ected from Kochi and Goa coastal waters are presented in 
igure 2 for the wavelength range of 400—750 nm. A total 
f 131 IOP measurements from Kochi and Goa coastal wa- 
ers at seven light wavelengths corresponding to 412, 443, 
69, 490, 510, 555, and 670 nm are subsets to compare the 
PA’s. These wavelengths are present in most ocean color 
ensors starting from SeaWiFS to the latest Ocean and Land 
olor Imager of Sentinel-3 and the upcoming Ocean Color 
onitor of the OceanSat-3 satellite. 
The Kochi coastal waters are dominated by phytoplank- 

on and NAP material with a ph ( 443 ) and a d ( 443 ) ranges 
f 0.032—1.121 m 

−1 and 0.041—0.802 m 

−1 respectively, 
s compared to CDOM absorption with a g ( 443 ) range of 
.003—0.043 m 

−1 . In the case of Goa coastal waters, the 
ariations in phytoplankton, CDOM and NAP material ab- 
orption coefficients vary in the ranges of 0.023—0.198 
 

−1 , 0.058—1.506 m 

−1 and 0.000—0.517 m 

−1 respectively. 
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Figure 1 Locations of sampling sites shown as red dots in coastal waters of Goa and Kochi, India. 

Figure 2 Variability of a ph (λ) , a d (λ) and a g (λ) for the 131 measurements from Kochi (green curves) and Goa (blue curves) in 
the wavelength range of 400—750 nm. Kochi waters are dominated by phytoplankton and NAP material, as indicated by higher 
magnitudes of a ph (λ) and a d (λ) , as compared to a g (λ) . Goa waters are dominated by NAP and CDOM, as compared to phytoplankton. 

T
c
t
N

a
T
t
1
b
f
S
(  

2
r
c
w
a
a

2

2
T
S
c
t
t
i
t
w
p
a
(
T
t
p
o

he mangrove-rich Mandovi-Zuari estuarine system in Goa 
oastal waters contributes to higher CDOM via freshwa- 
er discharge and tidal interaction ( Menon et al., 2011 ; 
imit et al., 2016 ). 
The ratio of CDM to phytoplankton absorption coefficient 

t 443 nm, a dg ( 443 ) : a ph ( 443 ) ranges from 0.149—26.123. 
he NAP to phytoplankton ratio ( a d : a ph ) and CDOM to phy- 
oplankton ( a g : a ph ) ratio at 443 nm range from 0.019—
3.023 and 0.004 to 19.45, respectively. The blue-to-red 
and ratio for phytoplankton, a ph ( 443 ) : a ph ( 670 ) , ranges 
rom 1.222 to 29.199. Similar to S g , the values of S d and 
 dg are calculated by fitting a nonlinear exponential fit 
 Bricaud et al., 1981 ; Das et al., 2017 ; Twardowski et al.,
004 ) using a MATLAB code ( Boss, 2014 ). The wavelength 
ange used for fit is 400—750 nm. All the determination 
oefficients calculated for the exponential fits were al- 
ays > 0.9. All absorption subcomponent measurements 
re baseline corrected, assuming negligible absorption 
t 750 nm. 
N

423 
.2. Models used in the study 

.2.1. Schofield’s model 
he optical signature inversion method (OSI) was developed 
chofield et al., 2004 ) to invert the in situ absorption data 
ollected using ac-9 to calculate weights of specific absorp- 
ion coefficients for optical constituents present in the wa- 
er column ( Eq. (7) ). Here the spectral absorption from ac-9 
s the absorption after removal of absorption due to wa- 
er, a nw (λ) . Briefly, this model involves the calculation of 
eights (w 1—5 ) corresponding to three generalized phyto- 
lankton absorption spectra a ph 1 −3 (λ) ( Eq. 8 ), magnitudes 
nd exponential slopes ( S d and S g ) of NAP matter and CDOM 

 Eq. (9) and (10) ) using nonlinear constrained regression. 
he three a ph 1 −3 (λ) spectra correspond to generalized spec- 
ral absorption of chlorophyll a—c , phycobilin, and chloro- 
hyll a-b containing phytoplankton, respectively, and were 
btained from Johnsen et al. (1994) . For both CDOM and 
AP matter absorptions, a curve as a function of wave- 
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Table 1 Output variables from each absorption partitioning algorithm with reference. The parameters provided as model 
outputs are indicated by “X.” The parameters not provided as output by a model are indicated by “-.” For example, the SCM 

model provides a ph (λ) and a dg (λ) only as outputs and S dg is calculated using a dg (λ) . 

Model a ph (λ) a dg (λ) a d (λ) a g (λ) S d S g S dg Reference 

GSCM X X X X X X X ( Zheng et al., 2015 ) 
Lin X X X X X X X ( Lin et al., 2013 ) 
Schofield X X X X X X X ( Schofield et al., 2004 ) 
SCM X X - - - - X ( Zheng and Stramski, 2013a ) 
Zhang X X - - - - X ( Zhang et al., 2015 ) 
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ength and an exponential slope is used Eq. (9) and (10) . 
he OSI method uses distinctive constraints on the weights 
f the phytoplankton, CDOM and NAP matter absorption co- 
fficients. The constraints used on absorption coefficients 
re available from Schofield et al. (2004) . 

 nw ( λ) = a ph ( λ) + a d ( λ) + a g ( λ) (7) 

 ph ( λ) = w 1 a ph 1 ( λ) + w 2 a ph 2 ( λ) + w 3 a ph 3 ( λ) (8) 

 g ( λ) = w 4 exp 
[−S g ( λ − λ0 ) 

]
(9) 

 d ( λ) = w 5 exp [ −S d ( λ − λ0 ) ] (10) 

The reference wavelength, λ0 is set to 412 nm. The MAT- 
AB inbuilt routine ‘fmincon’ function with a sequential 
uadratic programming method is used as the optimization 
rocedure. The initial values for all weights are set to 0.001, 
nd for S g and S d parameters, the values are set to 0.010 and 
.008 nm 

−1 , respectively. The output variables, along with 
 reference for each model, are presented in Table 1 . 

.2.2. Lin’s model 
n a study by Lin et al. (2013) , absorption subcomponents of 
ater samples collected during eight cruises in the northern 
outh China Sea and NASA bio-Optical Marine Algorithm 

ataset (NOMAD) were used to model phytoplankton and 
articulate absorption coefficients ( a p (λ) , m 

−1 ) as second- 
rder quadratic empirical equations Eq. (11) and (12) . The 
articulate absorption coefficient consists of absorption 
rom both phytoplankton and NAP. The empirical equations 
xhibited good performance in representing empirical char- 
cteristics of phytoplankton and particulate coefficients 
 Lin et al., 2013 ). 

 ph ( λ) = m 0 ( λ) a ph ( λ0 ) 
2 + m 1 ( λ) a ph ( λ0 ) (11) 

 p ( λ) = n 0 ( λ) a p ( λ0 ) 
2 + n 1 ( λ) a p ( λ0 ) (12) 

The reference wavelength ( λ0 ) used to reconstruct a ph (λ) 
nd a p (λ) is set to 489 nm. The coefficients m 0 −1 and n 0 −1 

re provided in Table 2 of Lin et al. (2013) . 
Based on these spectral Eq. (11) and (12) relationships, 

n APA was proposed to partition a nw (λ) into the absorption 
ubcomponents in three steps. In the first step, a nw (λ) is 
artitioned into a ph (λ) and a dg (λ) with a nw (λ) expressed as 
q. (13) . 

 nw ( λ) = m 0 ( λ) a ph ( λ0 ) 
2 + m 1 ( λ) a ph ( λ0 ) 

+ a dg ( 412 ) exp 
[−S dg ( λ − 412 ) 

]
(13) 
424 
The optimal solution to Eq. (13) involves finding opti- 
al values of a ph ( λ0 ) , S dg and a dg ( 412 ) while minimizing the 
rror between modelled and measured a nw (λ) . Initial esti- 
ates of the variables were set to 0.1 m 

−1 , 0.015 nm 

−1 and
.2 m 

−1 , respectively. The values of a ph ( λ0 ) and a dg ( 412 ) 
re constrained to be greater than zero, and S dg is con- 
trained to vary between 0.008—0.03 nm 

−1 . The MATLAB in- 
uilt routine, Genetic Algorithms (GA) function is used as 
he optimization technique. The second step involves parti- 
ioning a nw (λ) into a p (λ) and a g (λ) with a nw (λ) expressed as 
q. (14) . 

 nw ( λ) = n 0 ( λ) a p ( λ0 ) 
2 + n 1 ( λ) a p ( λ0 ) 

+ a g ( 412 ) exp 
[−S g ( λ − 412 ) 

]
(14) 

The optimal values of a g ( 412 ) , a p ( λ0 ) and S g are found by
inimizing the same error function as in step-1. Initial esti- 
ates of a g ( 412 ) , a p ( λ0 ) and S g are set to 0.2 m 

−1 , 0.1 m 

−1 

nd 0.015 nm 

−1 respectively, and the same constraints in 
he first step are used here. In the final step, a p (λ) obtained 
n the second step is partitioned into a ph (λ) and a d (λ) , with 
 p (λ) modelled as Eq. (15) . 

 p ( λ) = m 0 ( λ) a ph ( λ0 ) 
2 + m 1 a ph ( λ0 ) 

+ a d ( 412 ) exp [ −S d ( λ − 412 ) ] (15) 

The optimal values of a ph ( λ0 ) , a d ( 412 ) and S d ( 412 ) are
ound by minimizing the error between modelled and a p (λ) 
rom step-2. The initial estimates of a ph ( λ0 ) , a d ( 412 ) and 
 d ( 412 ) are set to 0.1 m 

−1 , 0.2 m 

−1 and 0.010 nm 

−1 , respec- 
ively. As the accuracy of a ph (λ) from step-3 depends on the 
ccuracy of a p (λ) derived in step-2, these values are dis- 
arded and only a ph (λ) from step-1 are provided as output. 

.2.3. Stacked Constraints Model (SCM) 
he Stacked Constraints Model (SCM) was developed by 
heng and Stramski (2013a) to partition a nw (λ) into a ph (λ) 
nd a dg (λ) . The input for the model is a nw at minimum six 
ight wavelengths of 412, 443, 490, 510, 555 and 670 nm. 
his model was developed to address some of the existing 
imitations such as 1) requirement of additional ancillary 
nputs like Chlorophyll- a concentration or remote-sensing 
eflectance ( Ciotti and Bricaud, 2006 ; Lee et al., 2002 ; 
oesler et al., 1989 ); 2) applicability in particular coastal 
egions ( Gallegos and Neale, 2002 ; Schofield et al., 2004 ); 
) assumption of a fixed S dg ; 4) use of a single fixed spectral
hape or a linear combination of small number of predefined 
pectral shapes as in Schofield et al. (2004) and Ciotti and 
ricaud (2006) . 
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The SCM model is based on several inequality constraints 
etermined from an extensive, quality-verified dataset cov- 
ring a wide range of oceanic and coastal waters. This 
odel is based on less restrictive assumptions about the 
pectral shape of a ph (λ) and S dg . The less restrictive assump- 
ions allow to adequately account for large variations in the 
pectral shape of a ph (λ) that can be possible due to phyto- 
lankton community composition and acclimation to envi- 
onmental conditions. The SCM model uses field-measured 
epresentative spectra shapes of a p (λ) , a d (λ) and a g (λ) 
rom various locations for the development of the model. 
he output from the model consists of a range of feasible 
olutions of a ph (λ) and a dg (λ) that satisfy the inequality con- 
traints. 

.2.4. Generalized Stacked Constraints Model (GSCM) 
SCM ( Zheng et al., 2015 ) is an extended approach to the 
CM model and partitions a nw (λ) into a ph (λ) , a d (λ) and 
 g (λ) . The GSCM model is developed using the measured 
bsorption subcomponents from the Chesapeake Bay, USA. 
n addition to the inequality constraints used in the SCM 

odel, constraints pertaining to a d spectra are applied in 
he GSCM model. Unlike Lin’s and Schofield’s models, GSCM 

ses representative spectral shapes for absorption subcom- 
onents collected from the Chesapeake Bay. This model can 
e applied to other regions after performing modifications 
ased on collected field data, especially to the library of 
epresentative shapes of absorption subcomponents. Perfor- 
ance evaluation of the GSCM model in optically complex 
oastal, estuarine and inland waters in other regions needs 
o be performed. 

.2.5. Zhang’s model 
 model developed by Zhang inverts a nw (λ) to infer phyto- 
lankton size classes, chlorophyll concentration and CDM 

 Zhang et al., 2015 ). Three chlorophyll-specific absorption 
pectra a ∗pico (λ) , a 

∗
nano (λ) and a ∗micro (λ) corresponding to 

ico-, nano-, and micro- phytoplankton are used for mod- 
lling a ph (λ) ( Uitz et al., 2008 ). The inversion involves two 
teps. In the first step, S dg in Eq. (16) is fixed to an arbitrary
alue in the range [0.004, 0.02] nm 

−1 and a linear matrix 
nversion of the kernel comprising the three a ∗ph (λ) and 
 

∗
dg (λ) ( Eq. (18) ) is performed. The weight m 1 corresponds 
o a dg ( 400 ) m 

−1 and the three weights m 2 −4 correspond 
o chlorophyll- a concentrations of pico-, nano- and micro- 
hytoplankton. In the second step, the optimal value of S dg 

s found by minimizing the error between modelled a ∗nw and 
easured a nw . 

 

∗
dg ( λ) = exp 

(−S dg ( λ − 500 nm ) 
)

(16) 

 nw = a ∗nw m (17) 

 = [ m 1 , m 2 , m 3 , m 4 ] (18) 

 

∗
nw = 

[
a ∗dg , a 

∗
pico , a 

∗
nano , a 

∗
micro 

]
(19) 

To obtain the optimal value of S dg , bounded global mini- 
um search (‘fminbnd’ function of MATLAB) is used. 
Lin’s and Schofield’s models provide S d , S g and S dg as out- 

uts. In the case of other models, slopes for absorption co- 
fficients ( a d , a g , a dg ) are obtained by fitting an exponential 
t ( Bricaud et al., 1981 ; Das et al., 2017 ; Twardowski et al.,
004 ) using a MATLAB code ( Boss, 2014 ). 
425 
.3. Statistical indicators 

he statistical indicators used to assess the performance 
f five APA’s are mean absolute percentage error (MAPE), 
ean absolute error (MAE), centered root mean squared er- 
ors (RMSD), standard deviation, correlation coefficient and 
ercentage of valid retrievals (η) . 

AP E = 

(
100% 

n 

) n ∑ 

i =1 

∣∣( y i − ̂ y i ) / y i 
∣∣

MAE = 

(
1 
n 

) n ∑ 

i =1 

∣∣( y i − ̂ y i ) 
∣∣

RMSD = 

1 
n 

n ∑ 

i =1 

[ ( y i − y isd ) − ( ̂  y i − ̂ y isd ) ] 
2 

η = 

number of valid mod el − d erived values 
number of valid observ ed v alues 

X 100 

(20) 

here y i , ̂ y i , y isd and ̂ y isd represent the observed value, 
odel-derived value, the standard deviation of observed 
alues and standard deviation of model-derived values, re- 
pectively. The absorption subcomponents retrieved by var- 
ous models are considered valid only when the values are 
reater than zero. The number of such valid data points 
re used for the calculation of η. Similarly, only positive 
alues of measured absorption coefficients are considered 
alid ( n ). 
Taylor diagrams ( Joliff et al., 2009 ; Taylor, 2005 , 2001 ) 

resent a convenient way to compare various models in 
uantified terms of their correlation, standard deviations 
nd RMSD’s. The diagrams provide a view of the relative 
erit of one model over the other and hence are used to 
ompare the performance of APAs for their retrieval ca- 
ability of absorption subcomponents. In addition, a linear 
odel is fit between model-derived and measured absorp- 
ion subcomponents. A slope value close to one and a y- 
ntercept value near zero indicates that model-derived val- 
es compare well with observed data. 

. Results 

he input to five APA’s is a nw at seven wavelengths of 412, 
43, 469, 490, 510, 555, and 670 nm and the absorption 
oefficients of subcomponents from the APA’s are derived 
t these seven wavelengths only. Hereafter, the term “all 
avelengths” implies these seven wavelengths. 

.1. Comparison of models in the retrieval of 
hytoplankton absorption coefficient ( a ph (λ)) 

he results of the comparison of five models in the retrieval 
f a ph (λ) is presented in Figure 3 . For all models, MAPE val-
es for retrieved a ph at 443 and 670 nm are lower compared 
o the rest of the wavelengths. The highest MAPE values 
 Figure 3 A) were observed at 555 nm compared to the rest of
he wavelengths for all models. The average spectral MAPE 
average of MAPE values across all wavelengths) for a ph (λ) 
etrieved by GSCM, SCM and Schofield models lie in the 
ange of 26—29%. Lin and Zhang’s models resulted in higher 
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Figure 3 Comparison of (A) Spectral Mean Absolute Percentage Errors and (B) Percentage of valid retrievals η, for five models 
GSCM (Blackline with circular markers), Lin (black line), Schofield (grey thick dashed line), SCM (black dotted line) and Zhang 
(black dashed line) in the retrieval of spectral a ph , a dg , a d and a g . SCM and Zhang’s models provide a ph and a dg spectra as outputs. 
Schofield, GSCM and Lin’s models provide a ph , a dg , a d and a g spectra as outputs. 
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verage spectral MAPE values of 44% and 34%, respectively, 
ompared to the rest of the models. For the MAE statistic, 
ll models exhibited a decreasing pattern with an increase 
n wavelength. The highest MAE values in the range 0.10—
.13 m 

−1 are observed at 412 nm and lowest values of the 
ange 0.01—0.02 m 

−1 at 670 nm ( Figure 3 B). In the case of
( Figure 3 C), a ph retrieved by all models at all wavelengths 
re more than 75% valid. GSCM and SCM models derived 
 ph (λ) have slightly lower η as compared to Lin, Schofield 
nd Zhang models. The comparison of models using the cor- 
elation coefficient, standard deviation and RMSD’s is pre- 
ented in Taylor diagrams ( Figure 4 ). Average spectral RMSD 

or GSCM and SCM models are similar, i.e., 0.0645 m 

−1 . 
Similarly, Zhang and Schofield’s models obtained a simi- 

ar average spectral RMSD of 0.0758 m 

−1 . Spectrally, all the 
odels exhibited a decreasing trend with higher RMSD’s in 
lue wavelengths (412 nm) to lower RMSD’s in red wave- 
engths (670 nm) as observed in MAE. The average spectral 
orrelation coefficients of GSCM (0.89), Lin (0.84), Schofield 
0.84), SCM (0.89) and Zhang models (0.85) similar perfor- 
ance of all models. Based on all the statistics, GSCM, SCM 

nd Schofield’s models exhibited a better performance in 
he retrieval of a ph (λ) with lower errors but with a slightly 
426 
ower number of valid retrievals as compared to other 
odels. 

.2. Comparison of models in the retrieval of the 

bsorption coefficient of CDM ( a dg (λ)) 

n retrieval a dg (λ) of , all models resulted in lower MAPE val- 
es in the blue-green wavelength region and increased to- 
ards the red wavelength region ( Figure 3 A). Higher MAPE 
alues were observed at 670 nm as compared to the rest 
f the wavelengths. The average spectral MAPE for a dg (λ) 
etrieved by GSCM (37%), Schofield (35%), Lin (37%), Zhang 
39%), and SCM (45%) models indicate better performance 
f Schofield, Lin and GSCM models. As observed in the case 
f a ph (λ) , spectral MAE statistics for all models exhibit a de- 
reasing pattern ( Figure 3 B). In the case of η ( Figure 3 C),
CM and Zhang models resulted in more than 85% valid re- 
rievals at all wavelengths. The value of η for Lin, Schofield 
nd GSCM models-derived a dg is higher in blue-green wave- 
engths and decreased towards longer wavelengths, with 
he lowest η% observed at 670 nm. The comparison of mod- 
ls in retrieval of a dg (λ) using correlation coefficient, stan- 
ard deviation and RMSD’s is presented in Taylor diagrams 
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Figure 4 Taylor diagrams for a ph at six light wavelengths (412, 443, 490, 510, 555, 670 nm) retrieved by GSCM, Lin, Zhang, SCM 

and Schofield models. 
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 Figure 5 ). The average spectral RMSD values of GSCM (0.064 
 

−1 ) , Zhang (0.073 m 

−1 ) and Schofield (0.084 m 

−1 ) models 
re lower as compared to Lin (0 . 126 m 

−1 ) and SCM (0.146
 

−1 ) models. Similar to a ph (λ) , all models exhibited a spec- 
rally decreasing trend with an increase in wavelength. The 
verage spectral correlation coefficients of GSCM (0.82), Lin 
0.73), Schofield (0.88), SCM (0.42) and Zhang models (0.92) 
ndicate better performance of GSCM, Schofield and Zhang 
odels ( Figure 5 ). Based on the error statistics, GSCM and 

chofield’s models exhibited similar overall performance. A

427 
.3. Comparison of models in the retrieval of 
bsorption coefficients of NAP ( a d ( λ) ) and CDOM 

 a g (λ)) 

SCM, Lin’s and Schofield’s models provide a d and a g spec- 
ra as outputs along with a ph and a dg spectra. In the retrieval 
f a d (λ) , among the three models, GSCM resulted in lower 
APE values with an average spectral MAPE of 34% com- 
ared to Lin (45%) and Schofield (65%) models ( Figure 3 A). 
verage spectral MAE for GSCM (0.057 m 

−1 ) is also lower 
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Figure 5 Taylor diagrams for a dg at six light wavelengths (412, 443, 490, 510, 555, 670 nm) retrieved by GSCM, Lin, Zhang, SCM 

and Schofield models. 
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han Lin (0.066 m 

−1 ) and Schofield (0.146 m 

−1 ) models. Lin 
odel-derived a d have lower validity (67%) ( Figure 3 C), than 
chofield’s (82%) and GSCM (77%) model in 412—555 nm 

ange. Table 2 presents the correlation coefficient, slope 
nd y -intercept of linear model fit and RMSD’s calculated 
or model-derived a d and observed a d values at seven wave- 
engths. GSCM model resulted in higher correlation coeffi- 
ients ( > 0.75) at most of the wavelengths as compared to 
in and Schofield’s models ( Table 2 ). 
m

428 
The RMSD values for the GSCM model are lower com- 
ared to Lin’s and Schofield’s models at most of the wave- 
engths. Similarly, the linear fit slope for the GSCM model 
t various wavelengths ranges from 1.232 to 1.329 and 
loser to one. The slopes of linear fit for Lin’s model 
S ranges from 0.239 to 0.613) and Schofield’s model (S 
anges from 0.005 to 0.408) are far from one as com- 
ared to the GSCM model. Overall, GSCM model-derived 
 d spectra obtained lower errors than Lin’s and Schofield’s 
odels. 
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Table 2 Statistical indicators for a d and a g retrieved by GSCM, Lin and Schofield models at seven light wavelengths of 412, 
443, 469, 490, 510, 555 and 670 nm. The values in italics in the case of r and RMSD statistics represent the best performing 
model with the highest r and lowest RMSD. A linear model is fit between model-derived and measured absorption subcompo- 
nents. A slope value close to one and a y-intercept value near zero indicates that the model-derived values compare well with 
observed data. 

a d 

Model Statistic 412 443 469 490 510 555 670 

GSCM r 0.79 0.78 0.78 0.77 0.77 0.76 0.76 
Lin 0.41 0.40 0.38 0.37 0.37 0.37 0.40 
Schofield 0.27 0.14 0.17 0.20 0.27 0.60 0.02 

GSCM Slope 1.232 1.234 1.264 1.264 1.329 1.292 1.627 
Lin 0.613 0.554 0.495 0.442 0.424 0.406 0.239 
Schofield 0.212 0.061 0.077 0.091 0.133 0.408 0.002 

GSCM Y- 
intercept 

-0.0976 -0.0609 -0.0439 -0.0329 -0.0278 -0.0110 -0.0111 
Lin -0.0151 -0.0011 0.0076 0.0108 0.0105 0.0089 0.0046 
Schofield 0.0638 0.0838 0.0603 0.0470 0.0328 0.0001 0.0167 

GSCM RMSD 

[m 

−1 ] 
0.115 0.086 0.068 0.057 0.048 0.030 0.015 

Lin 0.135 0.099 0.077 0.063 0.051 0.032 0.012 
Schofield 0.219 0.234 0.174 0.139 0.103 0.042 0.114 

a g 

412 443 469 490 510 555 670 

GSCM r 0.91 0.89 0.90 0.89 0.88 0.87 0.85 
Lin 0.99 0.97 0.98 0.98 0.98 0.98 1.00 
Schofield 0.75 0.71 0.69 0.67 0.66 0.65 0.61 

GSCM Slope 0.711 0.587 0.528 0.481 0.452 0.445 0.594 
Lin 1.606 1.633 1.557 1.507 1.487 1.429 1.697 
Schofield 1.266 1.311 1.321 1.290 1.340 1.101 0.853 

GSCM Y- 
intercept 

-0.0148 -0.0094 -0.0131 -0.0103 -0.0059 -0.0037 -0.0017 
Lin -0.0254 -0.0080 -0.0015 0.0006 0.0048 0.0038 -0.0006 
Schofield -0.1182 -0.0941 -0.0718 -0.0566 -0.0497 -0.0150 -0.0020 

GSCM RMSD 

[m 

−1 ] 
0.174 0.150 0.122 0.104 0.088 0.054 0.011 

Lin 0.113 0.093 0.069 0.054 0.044 0.027 0.014 
Schofield 0.144 0.111 0.088 0.073 0.060 0.033 0.012 
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In retrieval of a g (λ) , Schofield’s model resulted in lower 
APE values with an average spectral MAPE of 42% com- 
ared to Lin (56%) and GSCM (46%) models ( Figure 3 A). The 
values ( Figure 3 C) from Lin (4%), GSCM (6%), and Schofield 
90%) indicate that most of Lin and GSCM model-derived 
 g (λ) are invalid. 
Lin’s model-derived a g exhibited the lowest RMSD at most 

f the wavelengths, possibly owing to least η. In the case of 
lopes of the linear fit, Schofield’s model obtained S values 
loser to one than Lin and GSCM models. Similar to lower 
MSD values, higher correlation coefficients obtained for 
SCM and Lin’s models-derived a g (λ) can be a result of the 
owest η. Overall, Schofield’s model-derived a g (λ) has lower 
rrors and the highest η% as compared to Lin and GSCM mod- 
ls ( Table 2 ). 
The ratio of model-derived IOPs to observed IOPs of 

 ph , a dg , a d and a g at seven light wavelengths of 412, 443, 
69, 490, 510, 555 and 670 nm are presented in Figure 6 . 
f the model-derived IOPs are closer to observed IOPs, 
he ratios will be closer to one, leading to a median 
429 
alue closer to one. Therefore, a model that exhibits a 
edian of ratios closer to one indicates better perfor- 
ance than models with a median of ratios far from 

ne. In the case of a ph (λ) (model-derived/observed) ra- 
io ( Figure 6 A), the deviation of median values (from one) 
f all models increased in 443—555 nm range. A similar 
attern is observed in the spectral MAPE values of a ph (λ) 
 Figure 3 A) with higher MAPE values at 555 nm among all
avelengths. 
Similar to the spectral MAE trend observed for a dg (λ) 

 Figure 3 ), the deviation in the median values of a dg (model-
erived/observed) ratio increased with an increase in wave- 
ength with higher deviations observed at 670 nm. This trend 
mplies that the model-derived a dg are closer to observed 
 dg at 412 and 443 nm and the deviation from observed 
 dg increased with increase in wavelength. In the case of 
 d (λ) (model-derived/observed) ratios, the median values 
f the GSCM model, are closer to one, indicating better 
erformance than Lin and Schofield’s models. These re- 
ults agree with lower error statistics observed for GSCM 
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Figure 6 Box and whiskers plots of the ratio of model-derived IOPs to observed IOPs, (A) a ph (λ) , (B) a dg (λ) , (C) a d (λ) , and 
(D) a g (λ) at seven light wavelengths of 412, 443, 469, 490, 510, 555 and 670 nm. A grey dashed line is used to indicate a ratio value 
of one. SCM and Zhang’s models provide a ph and a dg spectra as outputs. Schofield, GSCM and Lin’s models provide a ph , a dg , a d and a g 
spectra as outputs. The centre of each box indicates the median of the values, the top and bottom are the 25 th and 75 th percentage 
of samples, length of the box indicates the interquartile range. The outliers in model outputs are indicated by a circle, plus, square, 
cross and asterisk above and below the whiskers. 
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odel-derived a d (λ) . For the ratio of model-derived and ob- 
erved a g (λ) values ( Figure 6 D), median values from Lin’s 
nd Schofield’s models are closer to one as compared to 
SCM. 

.4. Comparison of models in the retrieval of 
lopes of absorption subcomponents, CDOM ( S g ), 
AP ( S d ) and CDM ( S dg ) 

SCM model-derived S dg obtained the least MAPE of ˜8% 

ompared to the rest of the models ( Figure 7 ). Zhang’s 
odel-derived S dg has a higher validity of 99% but with a 
igher MAPE of 23%. All the models can derive S dg with η
ore than 80%. Except for Zhang’s model, the slopes of the 

inear fits from other models are far from one. A possible 
eason for for this deviation could be resulting from the 
imited range of variation observed in S d g values. All model- 
erived S dg have lower correlation coefficients. 
430 
The model-derived S d vs. observed S d for GSCM, Lin and 
chofield’s models are presented in Figure 8 A. MAPE values 
or Lin and Schofield’s models in the retrieval of S d coeffi- 
ients are 7% and 19% as compared to 22% obtained for the 
SCM model. Schofield’s model resulted in the highest 93.8% 

alid S d retrievals as compared to Lin’s (69.2%) and GSCM 

86.9%). The slope and y -intercept of the linear fit between 
odel-derived and observed S d values of GSCM model are 
loser to one and zero as compared to the Lin and Schofield 
odels. The lowest MAPE obtained by Lin’s model could re- 
ult from the least η% values among the three models. Over- 
ll, GSCM model-derived S d obtained the highest r, S value 
loser to one and > 85% valid η. All the models exhibited 
oor performance in retrieval of S g parameter, i.e., lower r 
nd η ( Figure 8 B) were obtained as compared to the statis- 
ics obtained in the retrieval of S d and S dg coefficients. 
Overall, GSCM model-derived a ph , a dg , a d and S d have 

ower errors than the rest of the models. Schofield’s model 
lso exhibited good performance with a higher number of 
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Figure 7 Model-derived vs. in situ S dg retrieved by five models — GSCM, Lin, Schofield, SCM and Zhang. The statistics r — Corre- 
lation coefficient, σ — Standard deviation, M — Mean Absolute Percentage Error in %, � — Centred root-mean-square difference, 
S and I — Slope and Intercept of the linear fit and η is in %, calculated as (number of valid retrievals/number of valid observed 
values) × 100. The solid red line indicates a 1:1 line, and the black dotted line represents the linear fit between model-derived and 
in situ measured slope. 

Figure 8 Model-derived vs. in situ (A) S d and (B) S g retrieved by GSCM, Lin and Schofield models. The statistics r — Correlation 
coefficient, σ — Standard deviation, M — Mean Absolute Percentage Error in %, � — Centred root-mean-square difference, S and I —
Slope and Intercept of the linear fit and η is in %, calculated as (number of valid retrievals/number of valid observed values) × 100. 
The solid red line indicates a 1:1 line, and the black dotted line represents the linear fit between model-derived and in situ 
measured slope. 

431 
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Table 3 Statistical indicators for S g , S d and S dg derived from GSCM, Lin and Schofield’s models. Each of the five models is 
compared for their slope parameters retrieval performance with the application of 1). Baseline correction (BLC) to a ph (λ) 
and a g (λ) only and 2). BLC to a ph (λ) , a d (λ) and a g (λ) . Values of statistical indicators in italics indicate the better performing 
model. 

Model Statistic Slope 
coefficient 

BLC for a ph (λ) , a d (λ) and a g (λ) BLC only for a ph (λ) and a g (λ) 

S dg S d S g S dg S d S g 
GSCM MAPE [%] 8.37 22.37 44.05 37.71 23.00 44.48 

MAE [m 

−1 ] 0.0009 0.0028 0.0048 0.0023 0.0019 0.0047 
r 0.26 0.75 0.11 0.74 0.82 0.05 
Slope 0.195 1.876 0.095 0.738 1.817 0.224 
Y-intercept 0.0089 -0.0115 0.0158 0.0039 -0.0053 0.0138 
RMSD 0.0012 0.0036 0.0033 0.0014 0.0032 0.0036 
η% 82.3 86.9 54.6 73.3 82.4 55.7 

Lin MAPE [%] 15.85 7.68 30.04 23.46 45.99 47.15 
MAE [m 

−1 ] 0.0018 0.0009 0.0031 0.0014 0.0032 0.0052 
r 0.31 0.13 0.27 0.76 -0.43 0.14 
Slope 0.569 -0.009 0.207 1.100 -0.018 0.352 
Y-intercept 0.0046 0.0111 0.0073 0.0002 0.0112 0.0020 
RMSD 0.0024 0.0012 0.0037 0.0016 0.0021 0.0042 
η% 98.5 69.2 63.8 76.3 48.9 62.6 

Schofield MAPE [%] 14.86 13.89 25.65 22.29 22.90 23.76 
MAE [m 

−1 ] 0.0017 0.0017 0.0028 0.0015 0.0018 0.0023 
r 0.16 0.002 0.17 0.67 0.71 0.38 
Slope 0.271 -0.002 0.199 1.014 0.709 1.509 
Y-intercept 0.0076 0.0109 0.0077 0.0004 0.0030 -0.0051 
RMSD 0.0021 0.0021 0.0033 0.0017 0.0022 0.0028 
η% 95.4 93.8 73.8 63.4 76.3 49.6 

SCM MAPE [%] 20.98 - - 46.44 - - 
MAE [m 

−1 ] 0.0025 - - 0.0031 - - 
r 0.2 - - 0.67 - - 
Slope 0.641 - - 1.461 - - 
Y-intercept 0.0054 - - -0.0005 - - 
RMSD 0.0036 - - 0.0021 - - 
η% 90 - - 52.3 - - 

Zhang MAPE [%] 23.07 - - 29.50 - - 
MAE [m 

−1 ] 0.0024 - - 0.0019 - - 
r 0.33 - - 0.73 - - 
Slope 0.93 - - 0.571 - - 
Y-intercept 0.0027 - - 0.0049 - - 
RMSD 0.0036 - - 0.0015 - - 
η% 99.2 - - 40.0 - - 
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alid retrievals and errors for the derived absorption sub- 
omponents a ph , a dg and a d comparable with GSCM. None of 
he models exhibited good performance in deriving S g pa- 
ameter. 

.5. Effect of baseline correction of a d spectra on 

odel performance 

ll the absorption subcomponent data were baseline cor- 
ected before used as input to performance evaluation of 
odels. Baseline correction (BLC) significantly affects the 
erformance of models in deriving absorption subcompo- 
ents. In the case of a robust signal in NIR, the application of 
aseline correction may reduce the magnitude of absorption 
432 
t all wavelengths. Hence, to understand the effect of base- 
ine correction of a d , the entire analysis is repeated without 
orrecting a d ( Figures 9 and 10 , Table 3 ). 
Baseline correction of a d affects each model’s absorption 

ubcomponent retrieval performance differently, owing to 
istinctive methodologies ( Figure 9 ). 
Without BLC correction for a d (λ) , GSCM, SCM and Zhang’s 

odels exhibited a balanced change, i.e., average spec- 
ral MAPE for the retrieved a ph (λ) increased combined 
ith a decrease in average spectral MAPE for the re- 
rieved a dg (λ) . Lin and Schofield’s model-derived a dg (λ) ob- 
ained ∼10% lower average spectral MAPE without BLC cor- 
ection for a d (λ) compared to data with BLC corrected 
 d (λ) . If a d (λ) is not BLC corrected, η% for the derived 
 ph (λ) decreased combined with an increased η for derived 
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Figure 9 MAPE and MAE statistics for a ph (λ) and a dg (λ) derived from GSCM, Lin, Schofield, SCM and Zhang models. The five 
models are compared for their absorption subcomponent retrieval performance with the application of 1) baseline correction (BLC) 
to a ph (λ) and a g (λ) only and 2) BLC to a ph (λ) , a d (λ) and a g (λ) . 
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 dg (λ) , thereby indicating a balancing pattern as observed in 
APE. 
The average spectral MAPE for GSCM model-derived a d (λ) 

ecreased while using uncorrected a d (λ) ( Figure 10 ). In the 
ase of Lin’s model, the average spectral MAPE value for 
he derived a d (λ) increased by ∼8% while using uncorrected 
 d (λ) . BLC of a d (λ) didn’t have a significant effect on the 
SCM and Schofield model-derived a g (λ) . For Lin’s model, 
verage spectral MAPE for the derived a g (λ) decreased by 
433 
8% when uncorrected a d (λ) is used, thereby balancing 
he increase in average spectral MAPE observed in a d (λ) . 
he η% for a d (λ) and a g (λ) retrievals changed by less than 
%. 
MAPE values for S dg derived from all models using un- 

orrected a d (λ) are 8—30% higher than using baseline- 
orrected a d (λ) data ( Table 3 ). Similarly, η% for the de- 
ived S dg decreased by 8—50% when uncorrected a d (λ) 
ata is used by all models. Lin and Schofield’s model- 
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Figure 10 MAPE and MAE statistics for a d (λ) and a g (λ) derived from GSCM, Lin and Schofield models. The three models are 
compared for their absorption subcomponent retrieval performance with the application of 1) Baseline correction (BLC) to a ph (λ) 
and a g (λ) only and 2) BLC to a ph (λ) , a d (λ) and a g (λ) . 
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erived S d (λ) have 9% and 38% lower MAPE values when 
LC a d (λ) is used. Similar to S dg , higher η% are obtained 
hen a d (λ) data is baseline corrected. Lin’s model-derived 
 g obtained 17% lower MAPE in using baseline-corrected 
 d (λ) . Based on the observed errors and percentage of 
alid retrievals for the derived absorption subcomponents 
nd slope coefficients, using baseline-corrected data is 
uggested. 

. Discussion 

his paper focuses on evaluating the performance of a 
ariety of absorption partitioning algorithms. The models 
ere evaluated using a dataset covering sites Kochi and 
oa coastal waters of India. The higher concentrations of 
DOM and NAP material resulting from terrestrial runoff and 
oastal sediment re-suspension increase optical complexity 
f both sites. An increase in optical complexity increases 
he difficulty in partitioning a nw (λ) into absorption subcom- 
onents, especially in deriving a d and a g components with 
reater accuracy. One of the critical points in comparing the 
434 
odels using this dataset is that none of the models were 
arameterized based on Kochi and Goa coastal waters data, 
hus providing an independent evaluation. As the present 
tudy focuses on the applicability of APAs in coastal waters, 
heir performance comparison in the open ocean is out of 
cope and can be pursued in further studies. The absorp- 
ion measurements of phytoplankton and NAP material were 
ade implementing the QFT, wherein the first step is the 
easurement of a p (λ) and the second step involves subject- 

ng the sample filter to depigmentation treatment. The co- 
fficient a ph (λ) is then calculated as the difference between 
 p (λ) and a d (λ) . Although QFT provides reasonable esti- 
ates of a ph (λ) , some uncertainties that can induce an error 

n absorption measurements are incomplete removal of phy- 
oplankton pigments or removing pigments that do not be- 
ong to phytoplankton. This incomplete or excess removal 
an contribute to the mismatch between desired and mea- 
ured absorption coefficients of a p (λ) and a ph (λ) ( Zheng and 
tramski, 2013a , b ). Apart from the QFT method, the absorp- 
ion measurements can be obtained from absorption mea- 
uring devices like ac-9. However, these measurements can 
e affected by several factors like temperature, salinity and 
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cattering. Even with the best available methods for cor- 
ecting the errors and biases due to the factors mentioned 
bove, the residual error can be 20% or more. Further, the 
bsorption estimates can be less accurate and may contain 
igher errors in red and NIR wavelengths owing to a greater 
ontribution of water absorption ( Stockley et al., 2017 ). 
In addition to the APAs evaluated in the present study, 

ther APAs that require ancillary inputs like chlorophyll- a 
oncentration or remote sensing reflectance also exist 
 Ciotti and Bricaud, 2006 ; Lee et al., 2002 ; Roesler et al.,
989 ). The use of additional inputs apart from a nw (λ) can in- 
uce some additional errors and uncertainties, thereby in- 
reasing the complexity in the evaluation of APAs. The five 
odels evaluated for their IOP retrieval capabilities are not 
evoid of limitations. In the case of Lin’s model, a ph (λ) is 
arameterized as a quadratic function developed based on 
 large set of in situ data, however, this parameterization 
imits the variation in its spectral shape. Another limitation 
f the model is the generation of two sets of a ph (λ) and 
 d (λ) that are not identical, thereby resulting in an incom- 
lete closure. In all the three models, the absorption sub- 
omponents of a d (λ) , a g (λ) and a dg (λ) were modelled using 
 single spectral exponential shape. Such parameterization 
ould fail to represent potential variations in the slope as 
 function of wavelength in a given spectrum, especially 
or S g ( Loiselle et al., 2009 ; Zheng and Stramski, 2013a ). 
o overcome these existing limitations, the SCM model was 
roposed that allows for flexibility in the spectral shapes of 
oth a ph (λ) and a dg (λ) , and with less restrictive assumptions 
bout the slopes of a dg (λ) . Although this model was devel- 
ped using a large in situ dataset covering a wide range 
f optical properties, its performance in extreme cases is 
imited. The coastal waters of Goa represents such an ex- 
reme case wherein NAP and CDOM absorption dominates 
hytoplankton absorption and hence, the performance of 
CM model is limited ( Figure 3 ). The GSCM model was pro- 
osed to cover the coastal and estuarine waters (sediment 
nd CDOM rich) and also relaxes the assumption of expo- 
ential function for a dg (λ) in SCM model. Unlike SCM model, 
SCM uses a library of spectral shapes to describe the shape 
f a dg (λ) . Although GSCM model resulted in a lower number 
f valid retrievals, the IOPs retrieved resulted in lower er- 
ors as observed in Figure 3 and Figure 7 . The Zhang’s model 
as developed with emphasis on retrieval of the phyto- 
lankton size classes. The datasets used to evaluate Zhang’s 
odel cover both oceanic and coastal regimes, however, 
he a ph ( 443 ) in these datasets is higher compared to the 
 dg ( 443 ) range. For example, the range of a dg ( 400 ) observed 
n the NOMAD dataset used to evaluate Zhang’s model is low 

ith a range of 0.01—0.6 m 

−1 as compared to the dataset 
sed in the present study with a range of 0.08—2.99 m 

−1 . Al- 
hough Zhang’s model resulted in a higher number of valid 
etrievals of a ph (λ) and a dg (λ) among all other models, it 
lso resulted in higher MAPE values ( Figure 3 ). Both SCM and 
SCM models provide the flexibility for tuning with in situ 

ata with respect to inequality constraints, library shapes 
nd boundaries for better retrieval of IOPs. In the case of 
chofield’s, Lin’s and Zhang’s models, the variations in the 
pectral shapes of a ∗ph (λ) are fixed along with assumption of 
xponential shape for a dg (λ) . 
s

435 
. Conclusions 

n this study, we evaluated the applicability of five absorp- 
ion partitioning algorithms in partitioning a nw (λ) into sepa- 
ate component absorption coefficients of a ph (λ) , a d (λ) and 
 g (λ) or into a ph (λ) and a dg (λ) . The five APAs (Schofield’s, 
in’s, SCM, GSCM and Zhang’s models) were evaluated on 
 dataset comprising optically complex waters collected 
rom two sites, Kochi and Goa coastal waters of India. 
he evaluation of APAs in CDOM and NAP-rich waters (as 
n this study) is necessary to check their capability in re- 
rieving the absorption subcomponents and slope param- 
ters. The input to the models is a nw measured at seven 
ight wavelengths of 412, 443, 469, 490, 510, 555 and 
70 nm present in most remote-sensing and in situ plat- 
orms. The SCM and Zhang’s models provide a ph (λ) and 
 dg (λ) , whereas the remaining models, i.e., GSCM, Lin’s 
nd Schofield’s models, provide a ph (λ) , a d (λ) and a g (λ) 
oefficients. 
In the retrieval of a ph (λ) , the average spectral MAPE val- 

es of all the models lie in the range of 26—44%. Among 
he five models, GSCM, SCM and Schofield’s models exhib- 
ted better performance than the rest with lower average 
pectral MAPE and higher correlation coefficient values. In 
he case of a dg (λ) retrievals, average spectral MAPE val- 
es of the GSCM (37%), Lin (37%), Schofield’s (35%) mod- 
ls were lower than the rest of the models that resulted 
n average spectral MAPE values in the range of 39—45%. 
n the case of a d (λ) retrievals, the GSCM model exhib- 
ted a lower average spectral MAPE of 34% as compared to 
in’s (45%) and Schofield’s (65%) models. The average spec- 
ral MAPE values in the retrieval of a g (λ) for Lin’s (56%), 
chofield’s (42%) and GSCM (46%) indicate better perfor- 
ance of Schofield’s model compared to Lin’s and GSCM 

odels. All models exhibited good performance in the re- 
rieval of S dg MAPE values in the range of 8—23%. However, 
he correlation coefficients obtained for the linear fit be- 
ween modelled and measured S dg from all the models (ex- 
ept Zhang) is less than 0.65. GSCM model-derived S d co- 
fficients are > 85% valid, with the highest r of 0.75. None 
f the models demonstrated good performance in deriving 
 g . Overall, the GSCM model resulted in a good performance 
n the retrieval of the absorption subcomponents, a ph (λ) , 
 dg (λ) , a d (λ) and the S d in coastal waters of Kochi and Goa. 
ext, Schofield’s model exhibited good performance in re- 
rieval of a ph (λ) , a dg (λ) and a g (λ) . Baseline correction of 
AP absorption data profoundly impacts the errors and num- 
er of valid retrievals of the derived absorption subcompo- 
ents and slope coefficients. Results indicate that perform- 
ng BLC on NAP absorption data varied the performance of 
ach model differently. Based on the results, use of uncor- 
ected NAP data reduced the number of valid slope coeffi- 
ient retrievals. The performance of the remaining models 
ay further be improved by tuning the models with in situ 

ata. Further improvements are necessary to achieve rea- 
onable accuracy in the retrieval of a g (λ) and S g . As the 
resent study deals with Kochi and Goa sites only, these 
odels need to be tested in other sites to check the ability 
f the models in the retrieval of absorption coefficients of 
ubcomponents. 
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