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Summary

The paper presents the parameter estimation métinagtochastic intrinsic growth models
with time-varying parameters. The method is basedhe ideas of optimal control theory. The
illustrations of the identification method show th@ficiency of the presented ideas.
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1. Introduction

The communities of animals and plants are some pbesof biological
systems, where single-species population dynanﬁ:&)DR, tD[tO,tl],

depends on environmental variability, internal sfanmations, human control

factor, and etc. Moreover, it is hardly possiblesmate entirely one population

from the rest. Different mathematical models hawerbproposed to describe the
dynamics of biological populations (see Edelstegsiet, 2005, or Murray,

2006). One of the effective approach is to useicoatis model presented by
ordinary differential equations (ODE)
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dX (t) = X (t)a(X (t),8)dt, X(t,) = X,. (1.1)

where the intrinsic growth rate of the populatian de written as an infinite
power series for sufficiently smoota(LL)l as follows

n

a(X(t).0)=>,X"(t)=6,+6X (1) +6,X* () +....  (1.2)

with coefficients® = [6?0,6?1,...]T OR.
The model (1.1) presents the generalization of e&ptal growth model

dX (t)=gXx(t)dt, X(t,)=X,, (1.3)
and logistic growth model

dX (t) =(6X (1) +6,X2(t))dt, X(t,)=X,. (1.4)

(where 8 =p, pUOR, is the coefficient of the natural growth of the
population, 8, = - p/K with K#0, K OR, is the carrying capacity of the

environment for the species). The model (1.1) igemealistic to the true
population dynamics. However, the natural growtti #re carrying capacity are
never constant and vary with time, model (1.1) toalse modified. Taking into
account random disturbances, as it has been dokédbgva (2011), the single-
species population dynamics can be written asc@hastic differential equation
(SDE)

dX (t)=a(t, X (t),0(t))dt+b(t, X (t) ,0(t))dB(t), X(t,)=X,,  (L.5)
where a:[to,tl]XRXG - R, b:[to,tl]XRXG -~ R with © being a
given metric space, which specifies the set of ramdom values for the
parameters0 , 9([)] is the unknown non-random vector of parameterg, an
dB(t) is an increment of some stochastic prodB¢s).

The model (1.5) will be call the stochastic intiingrowth models with
time-varying parameters. The goal is to presentetenation method for the
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parameters® of the model (1.5), taking into account some prtiee of the
stochastic procesB(t).

2. ldentification method for thetime-varying parameters

2.1. Basic assumptions

For the simplicity in further reasoning we consitiee SDE (1.5) limiting
the family of stochastic processeB(t) to one-dimensional ordinary Brownian
motion (Bm):

B={B(t),tOR}, (2.1)

which is a centered Gaussian process with stagomarements such that
E[B(t)]=0 with probability 1 and varB(t)=[t| (E[Jidenotes the
expectation operator amﬁr[[]] denotes the variance operator). In this case, we

assume, that the solutioX (t) tD[tO,tl], of (1.5) exists and is unique in

strong sense, and the vector of paramellec®nsists fromr elements.
Now, let us denote the functions: f :RXxRxR" - R,

@:RxRxR" - R, ¢,:RXR - R, ¢,:RxR - R%, ¢,:RxR - R,
g :RxR - R (Igi<l)), ¢,:RxR" - R (1< j<I,) and formulate the
identification task as follows

I (x(3.0(0) =inf {tj f(t X (t),0(t))dt+4, (X (t,), X (tl))}, (2.2)

f

(inf (1) is the greatest lower bound) subjected to
* object equation (1.5)

dX (t) =g(t, X (t),0)dt, X(t,) =X, aetOt,,t],  (2.3)

» constraints on all possible initial and terminaines ofX
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@ (X (o), X (1)) < 0; (2.4)
w,(X(t,), X (t,)) =0; (2.5)

* phase constraints
g (t.X(t))<0 OtOftt)], i=1....1; (2.6)

* constraints on parameters

¢,(t0(t))<0 i=1..1,. 2.7)

The problem of the parameters estimation of (h8hé formulation (2.2) -
(2.7) is the optimal control task (see Milyutinagt 2004).

There are many possibilities to solve the genepéihr@l control problem
(2.2) - (2.7). Since the solution of the object aipn (1.5) is a stochastic
process, it is reasonable to use stochastic ptatcis it was done by Hu et al.,
2003. However, in our case we are not going toes6pure” optimal control
task. Since we consider a non-random vector ofrpeters, the SDE (1.5) can
be converted to the ODE by means of moment equafisee Filatova et al,
2010). The next section presents the estimatiorciples.

2.2. Estimation principle
Let m (t)=E[X(t)] and m,(t)= E[Xz(t)] be the first and second

moments of stochastic proceé@(t), tD[to,tl] , generated by the SDE (1.5).
Denote a new state variable

y(t)=[m(t),m(t)]OR?,

where y(t,) =[ m(t,).m,(to) | (m(t,) =E[X,]. my(t,)=E[X}]). and

describe object dynamics using a system of the ODEs
dy(t)=g(t,y(t).0(t))dt ae. tO[t,t,] . (2.8)

In this manner we have the possibility to use thinciple maximum of
Pontryagin, described by Milyutin and OsmolovsRki®98, or Milyutin et al.,
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2004, to solve the parameter estimation problemw N@ introduce several
definitions, which help to construct the estimatinaethod.

Definition 2.1. Any (0} is called a feasible parameters vectyr(L, if
« 0(JOV[t,,t,], where V[ty,t] @{9: [to.t,] - ©[0(Pis measurab}e;

« y(Dis the unique solution of the system of the ODES)(underd (IJ;

 the state constraints (2.4) and (2.5) are satisfied

. f (t,y(t) ,B(t)) belongs to the set of Lebesgue measurable fursctioch
that

Definition 2.2. @([)]is called an optimal estimate ([}, if J (9([)]6([)]) is

measurable and there exists >0 such that for anyu, ([)] the following
inequalities are fulfilled

Hy([)]_y([):uc([to,tl],Rz) <€&,
3(y(3.0(9)=3 (9(7.6(7).

where C([to,tl],Rz) is the set of all continuous function§, denotes the
estimate. (]

The definitions 2.1 and 2.2 allow us to propose @joal function (2.2) as
follows
L'}
Iy (o) =int [ (Ly(t).0(0)et.
t

where
f(ty(1).0()=[e(ty 0)-g(t98)]

The phase constraints (2.6) and state constr&rity ¢an be defined on the
basis of the properties of the stochastic procsms Shyryaev, 1998). As it was
said before, the Pontryagin's type maximum prireiphs to be used to find the
solution to the estimation problem. In this caseimteoduce the Pontryagin’'s
function
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H(ty(1).0().0 (1) =2 (9(ty (1) 0(1) -anf (ty (1) 0()). (@9

where w(t)D(RZ)' is an adjoint function of bounded variation

(% : [t,t)] - R? is an absolutely continues functiong, is a number.

The theorem below, based on Dubovitski-Milyutin huet (see Milyutin et
al., 2004), gives the possibility to find an optireatimate 0 () of () for
SDE (1.5).

Theorem 2.1. Let 8([) be an optimal estimate 08([) and (9(@,6@) be an
optimal pair @(J0L” ([to,tl] ,Rz), y(DIO C([to,tl] ,RZ)). Then there exist a

numbera,, a function of bounded variatiogy(t) (which defines the measure
dy), a function of bounded variatiom (t) (which defines the measurdA)
such that the following conditions hold:

- nontriviality | a, |+|dA| > 0,

* nonnegativitya, 20, dA=0,

e complementary slacknesbA(t)g(t,y(t)) =0,

* adjoint equation

-dy(t) =w(t) 4, (t.9(1).0(t) - aof, (1.9(t) B(1)) - g, (1.9 (1)) dA (2.10)

« transversality condition(t,) =0,
the local maximum condition

w(t)#, (6.9(1).B() - 1, (t.9(r) B(1)) = 0. (2.12)

]
The proof of the theorem 2.1 is not complicatede General case of the proof
can be found in Milyutin and Osmolovskii (1998)int~ilatova (2012).

3. Example

According to Atlantic State Marine Fisheries Consios
(http://www.asmfc.orp as of 2010 the Atlantic herring was not threatene
by overfishing. This fact can be explained by restlnumber of herring natural
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predators among which were cod fish and salmon iandonsequence by
unlimited growth of herring population. The dated Fig.1), which describe
this population, give the possibility to use theckiastic intrinsic growth model
as

dX (t) =g (t) X (t)dt+6,(t) X (t)dB(t), X(t,)=X,,  (3.1)

whered(t) =[ 4,(t).6, (t)]T is a vector of unknown parameters.

Taking into account the martingale property of 1J2and applying Ito formula
to E|:X (t):| and E[Xz(t)] we replace (3.1) by the following system of
ODEs

{drq(t) 6,(t)m,(t)dt, (3.2)

am(0)= (20 +GE(0)m (et
where m (t,) =E[X,], m,(t,)=E[X?].

2000r

biomass, 1000 metric tones

1000-

10975 1980 1985 1990 1995 2000 2005 2010

year

Fig. 1. Annual observations of North Atlantic herring ptaiion counted by five independent
observatory
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penote  #(1,9.0)=[8,(t) (1) (2,(t) +&2(1)) ()] and

#(t,y,0) =[¢1,¢2]T (values of ¢(t,y,0) can be found on the basis of the
given data). The goal function (2.2) takes form

3(9(3.6(3) =§:[(¢1 -6,() (1)) +(#,~(26,(t) + &5 (1)) (t))* et

mind
The phase constraints (2.6) come from moment ptieger
g, (ty(t):m(t)-m,(t) <0,
g, (t.y(t)):=my(t) <0,

and the constraints on the parameters (2.7) aréakeh on the account. The
Pontryagin function (2.9) can be presented as

H(.90)-6(0.0(0)) =0 (B +4 (0(2() +6()) (1)
a0 (8,60 () +(0,-(26,0) + (). 0) |
where ¢ =[ ¢, (t).4,, (1)] -

In this case the conditions of the theorem 2.1 lparrewritten in following
manner:

nontriviality
|a, |+]|d A +[dA,]| > O, (3.3)
nonnegativity
a,20,d4,20,dA4,2 0, (3.4)
complementary slackness
(i (t) =, (t)) dAy() =0, 9
i, (t) dA,(t) =0,

adjoint equation
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—dy, (t)

W, (1)8 (t)dt+2a,6,(t) (¢, - y(t)) dt —dA,,
_d‘/jmz(t) (

w ((28.(0)+ 6 (1) dt- 20, (1) + (1)) 36)
+mz(t)(46'f() %,(1)83 (1) +63(1)) |+ dA,+ A,

* transversality condition

Wy () =0,
¥, () =0,
* the local maximum condition
0= g, (1) (t) + 2, (1)1 (t) — 20, (G0 (1) - 21 (t)
+48 (1) 2 (t) + 262 (1) M3 (1)) (3.8)
0= g, (1), (1) - day (g, (1) + 2B,(t) + &3 (t) (1))

Numerical solution of (3.2) and (3.7) under cormis (3.4) — (3.6), (3.8), (3.9)
of the theorem 2.1 with respect &(t) and 6, (t) shows Fig.2. Finally, the
model (3.1) takes form

(3.7)

dX (t) =(0.0082+ 0.0019 X (t)dt+ 0.0256(t)dB(t),
X (t,) =500*10°. (3.9)

Conclusions

In this paper, the estimation method for stochadifferential equation with
time-varying parameters was proposed. The samargchan be used if one is
interesting in parametric identification of a systeof ordinary differential
equations. The method is based on the ideas ahabptiontrol theory, namely
on the Dubovitski-Milyutin method. In the futuréetnumerical experiments are
intended to take place in order to investigateattwuracy of the method.
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Fig. 2. Results of the identification
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