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Summary 

The paper presents the parameter estimation method for stochastic intrinsic growth models 
with time-varying parameters. The method is based on the ideas of optimal control theory. The 
illustrations of the identification method show the proficiency of the presented ideas. 
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1.  Introduction 

The communities of animals and plants are some examples of biological 

systems, where single-species population dynamics ( )X t ∈R , [ ]0 1,t t t∈ , 

depends on environmental variability, internal transformations, human control 
factor, and etc. Moreover, it is hardly possible to isolate entirely one population 
from the rest. Different mathematical models have been proposed to describe the 
dynamics of biological populations (see Edelstein-Keshet, 2005, or Murray, 
2006). One of the effective approach is to use continuous model presented by 
ordinary differential equations (ODE) 
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 ( ) ( ) ( )( ),dX t X t a X t dtθ= , ( )0 0X t X= , (1.1) 

where the intrinsic growth rate of the population can be written as an infinite 

power series for sufficiently smooth ( ),a ⋅ ⋅  as follows 

 ( )( ) ( ) ( ) ( )2
0 1 2

0

, ...n
n

n

a X t X t X t X tθ θ θ θ
∞

=
= = + + +∑θ , (1.2) 

with coefficients [ ]0 1, ,...
Tθ θ= ⊆θ R . 

The model (1.1) presents the generalization of exponential growth model 

 ( ) ( )1dX t X t dtθ= ,  ( )0 0X t X= , (1.3) 

and logistic growth model 

 ( ) ( ) ( )( )2
1 2dX t X t X t dtθ θ= + ,  ( )0 0X t X= , (1.4) 

(where 1θ ρ= , ρ ⊆ R , is the coefficient of the natural growth of the 

population, 2 Kθ ρ= −  with 0K ≠ , K ⊆ R , is the carrying capacity of the 

environment for the species). The model (1.1) is more realistic to the true 
population dynamics. However, the natural growth and the carrying capacity are 
never constant and vary with time, model (1.1) has to be modified. Taking into 
account random disturbances, as it has been done by Filatova (2011), the single-
species population dynamics can be written as a stochastic differential equation 
(SDE) 

( ) ( ) ( )( ) ( ) ( )( ) ( ), , , ,dX t a t X t t dt b t X t t dB t= +θ θ , ( )0 0X t X= , (1.5) 

where [ ]0 1: ,t t × × Θ →a R R , [ ]0 1: ,t t × × Θ →b R R   with  Θ   being a 

given metric space, which specifies the set of non-random values for the 

parameters θ , ( )⋅θ  is the unknown non-random vector of parameters, and 

( )dB t  is an increment of some stochastic process ( )B t .  

The model (1.5) will be call the stochastic intrinsic growth models with 
time-varying parameters. The goal is to present the estimation method for the 
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parameters θ  of the model (1.5), taking into account some properties of the 

stochastic process ( )B t .  

2. Identification method for the time-varying parameters 

2.1. Basic assumptions 

For the simplicity in further reasoning we consider the SDE (1.5) limiting 

the family of stochastic processes  ( )B t  to one-dimensional ordinary Brownian 

motion (Bm): 

 ( ){ },B B t t= ∈R , (2.1) 

which is a centered Gaussian process with stationary increments such that 

( ) 0B t =  E  with probability 1 and ( )varB t t=  ( [ ]⋅E denotes the 

expectation operator and [ ]var ⋅  denotes the variance operator). In this case, we 

assume, that the solution ( )X t , [ ]0 1,t t t∈ , of  (1.5) exists and is unique in 

strong sense, and the vector of parameters θ  consists from  r  elements.  

Now, let us denote the functions: : rf × × →R R R R , 

: rφ × × →R R R R , 0 :ψ × →R R R , 1
1 : kψ × →R R R , 2

2 : kψ × →R R R , 

:ig × →R R R  ( 11 i≤ ≤ l ), : r
jϕ × →R R R  ( 21 j≤ ≤ l ) and formulate the 

identification task as follows 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1

0
0 0 1, inf , , ,

t

t
X f t X t t dt X t X tψ

∈Θ

 
⋅ ⋅ = ∫ + 

 θ

θ θJ , (2.2) 

( ( )inf ⋅  is the greatest lower bound) subjected to 

• object equation (1.5) 

 ( ) ( )( ), ,dX t t X t dtφ= θ , ( )0 0X t X= , [ ]0 1. . ,a e t t t∈ , (2.3) 

• constraints on all possible initial and terminal values of X 
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 ( ) ( )( )1 0 1, 0X t X tψ ≤ ; (2.4) 

 ( ) ( )( )2 0 1, 0X t X tψ = ; (2.5) 

• phase constraints 

 ( )( ) [ ]0 1 1, 0 , 1,...,, , ig t X t t t t i≤ ∀ ∈ = 1,,1 li K= ; (2.6) 

• constraints on parameters 

 ( )( ), 0 1,...,, j t t jϕ ≤ =θ 2,,1 li K= . (2.7) 

The problem of the parameters estimation of (1.5) in the formulation (2.2) - 
(2.7) is the optimal control task (see Milyutin et al., 2004).  

There are many possibilities to solve the general optimal control problem  
(2.2) - (2.7). Since the solution of the object equation (1.5) is a stochastic 
process, it is reasonable to use stochastic principles as it was done by Hu et al., 
2003. However, in our case we are not going to solve "pure" optimal control 
task. Since we consider a non-random vector of parameters, the SDE (1.5) can 
be converted to the ODE by means of moment equations (see Filatova et al, 
2010). The next section presents the estimation principles. 

2.2. Estimation principle 

Let  ( ) ( )1 =   m t X tE   and  ( ) ( )2
2  =  m t X tE   be the first and second 

moments of stochastic process ( )X t , [ ]0 1,∈t t t , generated by the SDE (1.5). 

Denote a new state variable 

( ) ( ) ( ) 2
1 2,= ∈  y t m t m t R ,  

where ( ) ( ) ( )0 1 0 2 0,=   y t m t m t  ( ( ) [ ]1 0 0m t X= E , ( ) [ ]2

2 0 0m t X= E ), and 

describe object dynamics using a system of the ODEs 

 ( ) ( ) ( )( ), ,ϕy y θ====d t t t t dt a.e.  [ ]0 1,∈t t t . (2.8) 

In this manner we have the possibility to use the principle maximum of 
Pontryagin, described by Milyutin and Osmolovskii, 1998,  or Milyutin et al., 
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2004, to solve the parameter estimation problem. Now we introduce several 
definitions, which help to construct the estimation method. 

Definition 2.1. Any  ( )⋅θ   is called a feasible parameters vector  ( )⋅θ f , if 

•   ( ) [ ]0 1,⋅ ∈θ t tV , where  [ ] [ ] ( ){ }0 1 0 1, : , is measurable→ Θ ⋅@ θ θt t t tV ; 

• ( )⋅y  is the unique solution of the system of the ODEs (2.8) under ( )⋅θ ; 

• the state constraints (2.4) and (2.5) are satisfied; 

• ( ) ( )( ), ,y θf t t t   belongs to the set of Lebesgue measurable functions such 

that 

 ( ) ( )( )
1

0

, , < ∞∫ y θ

t

t

f t t t dt . ■ 

Definition 2.2. ( )ˆ ⋅θ is called an optimal estimate of  ( )⋅θ , if  ( ) ( )( )ˆˆ ,⋅ ⋅y θJ   is 

measurable and there exists  0ε >   such that for any  ( )⋅u f   the following 

inequalities are fulfilled 

( ) ( ) [ ]( )2
0 1, ,

ˆ ε⋅ − ⋅ <y y
t t RC

, 

( ) ( )( ) ( ) ( )( )ˆˆ, ,⋅ ⋅ ≥ ⋅ ⋅y θ y θJ J , 

where [ ]( )2
0 1, ,t tC R  is the set of all continuous functions, ⋅̂  denotes the 

estimate.                           ■ 

The definitions 2.1 and 2.2 allow us to propose the goal function (2.2) as 
follows 

( ) ( )( ) ( ) ( )( )
1

0

, inf , ,
t

t

f t t t dt
∈Θ

⋅ ⋅ = ∫
θ

y θ y θJ , 

where  

( ) ( )( ) ( ) ( ) 2

2

ˆˆ, , , , , ,f t t t t tϕ ϕ= −y θ y θ y θ . 

The phase constraints (2.6) and state constraints (2.7) can be defined on the 
basis of the properties of the stochastic process (see Shyryaev, 1998). As it was 
said before, the Pontryagin’s type maximum principle has to be used to find the 
solution to the estimation problem. In this case we introduce the Pontryagin’s 
function 
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( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )0, , , , , , ,t t t t t t t t f t t tψ ψ ϕ α= −y θ y θ y θH , (2.9) 

where  ( ) ( )2 'tψ ∈ R  is an adjoint function of bounded variation 

( [ ] 2
0 1: ,t tψ → R   is an absolutely continues function),  0α   is a number. 

The theorem below, based on Dubovitski-Milyutin method (see Milyutin et 

al., 2004), gives the possibility to find an optimal estimate  ( )ˆ ⋅θ  of  ( )⋅θ  for 

SDE (1.5). 

Theorem 2.1. Let ( )ˆ ⋅θ  be an optimal estimate of  ( )⋅θ  and ( )ˆˆ ( ), ( )⋅ ⋅y θ   be an 

optimal pair ( [ ]( )2
0 1( ) , ,t t∞⋅ ∈θ L R ,  [ ]( )2

0 1( ) , ,t t⋅ ∈y C R ). Then there exist a 

number 0α , a function of bounded variation  ( )tψ   (which defines the measure  

dψ ), a function of bounded variation  ( )tλ   (which defines the measure  dλ ) 
such that the following conditions hold: 

• nontriviality 0| | 0dα λ+ > , 

• nonnegativity 0 0α ≥ , 0dλ ≥ , 

• complementary slackness ( ) ( , ( )) 0d t g t tλ =y , 

• adjoint equation 

 ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( )0
ˆ ˆˆ ˆ ˆ, , , , ,ϕ α λ− = − −y y yy θ y θ yψ ψψ ψψ ψψ ψd t t t t t f t t t g t t d ,(2.10) 

• transversality condition 1( ) 0=ψψψψ t , 

• the local maximum condition 

 ( ) ( ) ( )( ) ( ) ( )( )ˆ ˆˆ ˆ, , , , 0ψ ϕ − =
θ θ

y θ y θt t t t f t t t . (2.11) 

■ 
The proof of the theorem 2.1 is not complicated. The general case of the proof 
can be found in Milyutin and Osmolovskii (1998) or in Filatova (2012). 

3. Example 

According to Atlantic State Marine Fisheries Commission 
(http://www.asmfc.org) as of 2010 the Atlantic herring was not threatened 
by overfishing. This fact can be explained by reduced number of herring natural 
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predators among which were cod fish and salmon and in consequence by 
unlimited growth of herring population.  The data (see Fig.1), which describe 
this population, give the possibility to use the stochastic intrinsic growth model 
as 

 ( ) ( ) ( ) ( ) ( ) ( )1 2dX t t X t dt t X t dB tθ θ= + ,  ( )0 0X t X= , (3.1) 

where ( ) ( ) ( )1 2,t t tθ θ θ=   
T

 is a vector of unknown parameters. 

Taking into account the martingale property of  (2.1) and applying Ito formula 

to  ( )X t  E   and  ( )2X t  E   we replace (3.1) by the following system of 

ODEs 

 
( ) ( ) ( )
( ) ( ) ( )( ) ( )

1 1 1

2
2 1 2 2

,

2 ,

dm t t m t dt

dm t t t m t dt

θ
θ θ

 =
 = +

 (3.2) 

where  ( ) [ ]1 0 0m t X= E ,  ( ) [ ]2

2 0 0m t X= E . 
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Fig. 1. Annual observations of North Atlantic herring population counted by five independent 

observatory  
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Denote ( ) ( ) ( ) ( ) ( )( ) ( )2
1 1 1 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , 2t t m t t t m tϕ θ θ θ = +
 

y θ
T

 and 

( ) [ ]1 2, , ,tϕ ϕ ϕ=y θ
T
 (values of  ( ), ,tϕ y θ   can be found on the basis of the 

given data). The goal function (2.2) takes form 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
1

0

2
2 2

1 1 1 2 1 2 2
ˆmin

ˆ ˆ ˆ ˆˆ ˆ ˆ, ( 2 )
t

t
t m t t t m t dtϕ θ ϕ θ θ ⋅ ⋅ = ∫ − + − +

 
θ

y θJ  

The phase constraints (2.6) come from moment properties 

( )( ) ( ) ( )
( )( ) ( )

1 1 2

2 2

, : 0,

, : 0,

g t t m t m t

g t t m t

− ≤

− ≤

y

y
 

and the constraints on the parameters (2.7) are not taken on the account. The 
Pontryagin function (2.9) can be presented as 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ( ) ( )( ) ( ))
1 2

2
1 1 1 2 2

22
2

0 1 1 1 2 1 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ, , , 2

ˆ ˆ ˆˆ ˆ2 ,

m mt t t t t t m t t t t m t

t m t t t m t

ψ ψ θ ψ θ θ

α ϕ θ ϕ θ θ

= + +

− − + − +  

y θH
 

where  ( ) ( )
1 2

,m mt tψ ψ ψ =  
T

 . 

In this case the conditions of the theorem 2.1 can be rewritten in following 
manner: 
• nontriviality 

 0 1 2| | 0,d dα λ λ+ + >  (3.3) 

• nonnegativity 

 0 1 20, 0, 0,d dα λ λ≥ ≥ ≥  (3.4) 

• complementary slackness 

 
( ) ( )( )

( )
1 2 1

2 2

ˆ ˆ ( ) 0,

ˆ ( ) 0,

m t m t d t

m t d t

λ

λ

− =

=
 (3.5) 

• adjoint equation 



 IDENTIFICATION METHOD FOR THE STOCHASTIC INTRINSIC GROWTH… 93 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1 1

2 2

1 0 1 1 1 1

2 2
1 2 0 2 1 2

2 2 4
2 1 1 2 2 1 2

ˆ ˆ ˆ2 ,

ˆ ˆ ˆ ˆ2 2 2

ˆ ˆ ˆ ˆˆ 4 4 ,

m m

m m

d t t t dt t m t dt d

d t t t t dt t t

m t t t t t d d

ψ ψ θ α θ ϕ λ

ψ ψ θ θ α ϕ θ θ

θ θ θ θ λ λ

− = + − −

− = + − +


+ + + + +


 (3.6) 

• transversality condition 

 1

2

1

1

( ) 0,

( ) 0,

m

m

t

t

ψ
ψ

=

=
 (3.7) 

• the local maximum condition 

 

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( )( )

1 2

2

2
1 2 0 1 1 2 2

2 2 2
1 2 2 2

2 2
2 0 2 2 1 2 2

ˆˆ ˆ ˆ ˆ0 2 2 2

ˆ ˆˆ ˆ4 2 ,

ˆ ˆˆ ˆ ˆ0 4 2 .

m m

m

t m t t m t m t m t

t m t t m t

t m t m t t t m t

ψ ψ α θ ϕ

θ θ

ψ α ϕ θ θ

= + − −

+ +

= − − + +

 (3.8) 

Numerical solution of (3.2) and (3.7) under conditions (3.4) – (3.6), (3.8), (3.9) 

of the theorem 2.1 with respect to ( )1 tθ  and ( )2 tθ  shows Fig.2. Finally, the 

model (3.1) takes form  

( ) ( ) ( ) ( ) ( )0.0082 0.0019 0.0256dX t t X t dt X t dB t= + + , 

  ( )0
3500*10X t = .  (3.9) 

Conclusions 

In this paper, the estimation method for stochastic differential equation with 
time-varying parameters was proposed. The same scheme can be used if one is 
interesting in parametric identification of a system of ordinary differential 
equations. The method is based on the ideas of optimal control theory, namely 
on the Dubovitski-Milyutin method. In the future, the numerical experiments are 
intended to take place in order to investigate the accuracy of the method. 
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Fig. 2. Results of the identification 
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