PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 67 |

Tytuł artykułu

Monitoring of xylem formation in Picea abies under drought stress influence

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of drought stress on regular cambium activity and wood formation in stems of two different clones of Norway spruce (Picea abies (L.) Karst.) was investigated. Tissue samples were taken during the growing season from May to September 2010. Artificial drought stress, induced by long-term sheltering of the soil, was significantly manifested in clone 15. In the stressed individual, the period of cambium activity was shorter, the total number of formed cells was lower and the resulting tree ring was narrower. The number of cells in the phases of postcambial growth and secondary cell wall formation was significantly lower in comparison to the control tree. The tracheid lignification process was slower in the tree stressed by water deficit and the first mature tracheids were observed later. On the other hand, in clone 18 probably genetic dispositions played an important role as no considerable deviations in the cambium activity and new wood cells production were observed. Fitting xylem increments to the Gompertz function showed that the period of the most intensive cell formation was at the turn of June and July and the maximum daily production of new cells was higher in non-stressed individuals than in the stressed ones. The results of the experiment lead us to the conclusion that drought stress can significantly affect the cambium activity of some clones, the differentiation process of anatomical elements, and thus also the resulting tree ring width.

Wydawca

-

Czasopismo

Rocznik

Tom

67

Opis fizyczny

p.15-24,fig.,ref.

Twórcy

autor
  • Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic
autor
autor
autor
autor

Bibliografia

  • Abe H., Nakai T. 1999. Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D. Don. Trees – Structure and Function 14: 124–129.
  • Abe H., Nakai T., Utsumi Y., Kagawa A. 2003. Temporal water deficit and wood formation in Cryptomeria japonica. Tree Physiology 23: 859–863.
  • Allen M.R., Ingram W.J. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419: 224–232.
  • Deslauriers A., Morin H. 2005. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees – Structure and Function 19: 402–408.
  • Deslauriers A., Morin H., Urbinati C., Carrer M. 2003. Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada). Trees – Structure and Function 17: 477–484.
  • Deslauriers A., Rossi S., Anfodillo T., Saracino A. 2008. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology 28: 863–871.
  • Dufour B., Morin H. 2007. Focusing modelling on the tracheid development period – An alternative method for treatment of xylogenesis intra-annual data. Dendrochronologia 25: 125–133.
  • Gebauer R., Vola ik D., Urban J., Børja I., Nagy N.E., Eldhuset T.D., Krokene P. 2011. Effect of thinning on anatomical adaptations of Norway spruce needles. Tree Physiology 31: 1103–1113.
  • Gricar J. 2007. Xylo- and phloemogenesis in silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst.). Slovenian Forestry Institute, Ljubljana, 106 pp.
  • Gricar J., Cufar K. 2008. Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russian Journal of Plant Physiology 55: 538–543.
  • Gricar J., Levanic T., Oven P. 2008. Parameters of Gompertz function for evaluation of wood formation dynamics expressed as number of cells or measured widths in Norway spruce. Wood Research 53: 35–44.
  • Gricar J., Zupancic M., Cufar K., Koch G., Schmitt U., Oven P. 2006. Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Annals of Botany 97: 943–951.
  • Gryc V., Vavrcík H., Vichrová G. 2011. Monitoring of xylem formation in Norway spruce in the Czech Republic in 2009. Wood Research 56: 467–478.
  • Hansen V.T., Grimenes A.A. 2003. Meteorologiske data for Ås 2002. Institutt for tekniske fag, Norges landbrukshogskole, 19 pp.
  • Horácek P., Šlezingerová J., Gandelová L. 1999. Effects of environment on the xylogenesis of Norway spruce (Picea abies [L.] Karst.). In: Tree-ring analysis: biological, methodological and environmental aspects. Wimmer R., Vetter R.E. (eds.). CABI Publishing, Wallingford, pp. 33–54.
  • Heinrichs D.K., Tardif J.C., Bergeron Y. 2007. Xylem production in six tree species growing on an island in the boreal forest region of western Quebec, Canada, Canadian Journal of Botany 85: 518–525.
  • Kozlowski T.T., Kramer P.J., Pallardy S.G. 1991. The physiological ecology of woody plants. Academic Press, San Diego, 657 pp.
  • Kramer P.J. 1983. Water Relations of Plants. Academic Press, New York, 489 pp.
  • Larcher W. 2003. Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer-Verlag, Berlin Heidelberg, 504 pp.
  • Larson P.R. 1994. The vascular cambium: development and structure. Springer-Verlag, Berlin Heidelberg New York, 725 pp.
  • Mäkinen H., Nojd P., Saranpaa P. 2003. Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiology 23: 959–968.
  • Matovic A. 1985. Xylem formation in Norway spruce in various environment gradients of lower vegetation zones [in Czech]. VŠZ Brno, Brno, 65 pp.
  • Matovic A. 1990. Xylem formation and tree-ring width characteristics of Norway spruce (Picea abies /L./Karst.) at selected plots in various environment gradients [in Czech]. VŠZ v Brnì, Brno, 63 pp.
  • Mayer P., Prins K. 2003. State of Europe’s Forests 2003. The MCPFE Report on Sustainable Forest Management in Europe. Ferdinand Berger & Söhne Ges. m. b. H., Horn, 114 pp.
  • Nadezhdina N., Cermák J., Neruda J., Prax A., Ulrich R., Nadezhdin V., Gašpárek J., Pokorný E. 2006. Roots under the load of heavy machinery in spruce trees. European Journal of Forest Research 125: 111–128.
  • Oribe Y., Funada R., Kubo T. 2003. Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees – Structure and Function 17: 185–192.
  • Oribe Y., Funada R., Shibagaki M., Kubo T. 2001. Cambial reactivation in locally heated stems of the evergreen conifer Abies sachalinensis (Schmidt) Masters. Planta 212: 684–691.
  • Panshin A.J., De Zeeuw C. 1980. Textbook of Wood Technology. McGraw-Hill, New York, 722 pp.
  • Percy K.E., Ferretti M. 2004. Air pollution and forest health: toward new monitoring concepts. Environmental Pollution 130: 113–126.
  • Rigling A., Weber B., Cherubini P., Dobbertin M. 2004. Bestandesdynamik zentralalpiner Waldföhrenwälder auf gezeigt an hand dendroökologischer Fallstudien. Schweizeirische Zeitschrift für Forstwesen 155: 178–190.
  • Rossi S., Anfodillo T., Menardi R. 2006. Trephor: a new tool for sampling microcores from tree stems. IAWA Journal 27: 89–97.
  • Rossi S., Deslauriers A., Anfodillo T., Carraro V. 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152: 1–12.
  • Rossi S., Deslauriers A., Morin H. 2003. Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21: 33–39.
  • Rossi S., Simard S., Rathgeber C.B.K, Deslauries A., De Zan C. 2009. Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees – Structure and Function 23: 85–93.
  • Rybnícek M., Cermák P., Žid T., Kolá T. 2010. Radial growth and health condition of Norway spruce (Picea abies (L.) Karst.) stands in relation to climate (Silesian Beskids, Czech Republic). Geochronometria 36: 9–16.
  • Schmitt U., Jalkanen R., Eckstein D. 2004. Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland, Silva Fennica 38: 167–178.
  • Schweingruber F.H. 2007. Wood structure and environment. Springer-Verlag, Berlin-Heidleberg, 279 pp.
  • Tucker G.F., Hinckley T.M., Leverenz J.W., Jiang, S.M. 1987. Adjustments of foliar morphology in the acclimation of understory Pacific silver fir following clearcutting. Forest Ecology and Management 21: 249–268.
  • Vavrcík H., Gryc V. 2011. R-script for calculation of times of tracheid differentiation. Dendrochronologia 29: 135–138.
  • Wilcox H. 1962. Cambial growth characteristics. In: Tree Growth. Kozlowski TT (ed.). Ronald Press, New York, pp. 57–88.
  • Wilson B.F., Wodzicki T.J., Zahner R. 1966. Differentiation of cambial derivatives: proposed terminology. Forest Science 12: 438–440.
  • Wodzicki T.J. 1971. Mechanism of xylem differentiation in Pinus silvestris L. Journal of Experimental Botany 22: 670–687.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-85e138f5-6b8d-4ab9-8f52-59887c66ec0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.