PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 14 | 2 |

Tytuł artykułu

Current methods used to identify and genotype spirochaetes Borreliella burgdorferi

Treść / Zawartość

Warianty tytułu

PL
Aktualne metody identyfikacji oraz genotypowania krętków Borreliella burgdorferi

Języki publikacji

EN

Abstrakty

EN
Lyme disease, as one of tick-borne diseases, has been a current epidemiological problem in Poland and in the world for several years. The proportion of borreliosis infections caused by B. burgdorferi spirochaetes is increasing. Difficulties diagnosing t his disease w ith conventional methods have led to growing molecular biology research aimed at developing improved diagnostic tools. Molecular biology methods include all techniques that allow the detection and analysis of nucleic acids. Among them there are methods based on PCR reaction, molecular typing methods (MLST), new generation sequencing (NGS). The current development of this field gives great research opportunities. With regard to B. burgdorferi spirochaete, molecular biology is used to: confirm Lyme borreliosis, identify and type Borreliella spirochaetes, detect them in tick vectors or intermediate hosts, as well as to identify co-infections between different Borreliella species and other tick-borne pathogens. They are meant to significantly improve diagnostic analyzes. This paper reviews the current methods used for the detection and identification of B. burgdorferi. Molecular mechanisms for the survival of spirochaetes in the host, infection vectors and clinical picture of Lyme disease were also discussed.
PL
Borelioza, jako jedna z chorób odkleszczowych, od kilku lat stanowi aktualny problem epidemiologiczny w Polsce i na świecie. Wzrastający odsetek przypadków zakażeń boreliozą, chorobą wywołaną przez krętki B. burgdorferi, bardzo trudnych do zdiagnozowania metodami konwencjonalnymi, powoduje stale powiększające się zainteresowanie najnowszymi technikami z dziedziny biologii molekularnej. Metody biologii molekularnej obejmują wszystkie techniki pozwalające na wykrywanie i analizę kwasów nukleinowych. Wśród nich wyróżnia się metody oparte o rekację PCR, metody typowania molekularnego (MLST), sekwencjonowanie nowej generacji (NGS). Aktualny rozwój tej dziedziny daje ogromne możliwości badawcze. W odniesieniu do krętków B. burgdorferi biologię molekularną wykorzystuje się do: potwierdzenia boreliozy z Lyme, identyfikacji i typowania krętków Borreliella, wykrycia ich w wektorach kleszczowych, czy gospodarzach pośrednich, a także przy stwierdzeniu koinfekcji między różnymi gatunkami Borreliella i innymi patogenami przenoszonymi przez kleszcze. Mają one w znacznym stopniu usprawnić analizy diagnostyczne. W niniejszej pracy przedstawiono przegląd aktualnych metod umożliwiających wykrycie i identyfikację B. burgdorferi. Omówiono również molekularne mechanizmy umożliwiające przetrwanie krętków w organizmie gospodarza, wektory zakażenia oraz obraz kliniczny boreliozy.

Wydawca

-

Rocznik

Tom

14

Numer

2

Opis fizyczny

p.71-82,fig.,ref.

Twórcy

  • Medical Laboratory, Innovation Research Center, Pope John Paul II State School of Higher Education in Biala Podlaska, Biala Podlaska, Poland
autor
  • Faculty of Health Sciences, Pope John Paul II State School of Higher Education in Biala Podlaska, Biala Podlaska, Poland

Bibliografia

  • 1. de La Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et. al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Frontiers in Cellular and Infection Microbiology. 2017; 7: 114. https://doi.org/10.3389/fcimb.2017.00114
  • 2. Smoleńska Z, Matyjasek A, Zdrojewski Z. [Borreliosis – the latest recommendations on diagnosis and treatment]. Forum Reumatologiczne. 2016; 2(2): 58-64 (in Polish).
  • 3. Casjens SR, Fraser-Liggett CM, Mongodin EF, Qiu WG, Dunn JJ, Luft BJ, et.al. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. Journal of Bacteriology. 2011; 193(6): 1489-1490. https://doi.org/10.1128/JB.01521-10
  • 4. Mannelli A, Bertolotti L, Gern L, Gray J. Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiol Rev. 2012; 36: 837-861. https://doi.org/10.1111/j.1574-6976.2011.00312.x
  • 5. Gupta RS. Distinction between Borrelia and Borreliella is more robustly supported by molecular and phenotypic characteristics than all other neighbouring prokaryotic genera: Response to Margos’ et al. “The genus Borrelia reloaded”. PLoS One. 2019; 14(8). https://doi.org/10.1371/journal.pone.0221397
  • 6. Włodarek J, Żuraw A, Walczak R, Dziuban J, Jaśkowski JM. [Lyme Borreliosis: the most frequent tick-borne disease in humans and animals]. Medycyna Weterynarii. 2013; 69(6): 342 (in Polish).
  • 7. Raileanu C, Moutailler S, Pavel I, Porea D, Mihalca AD, Savuta G, et. al. Borrelia diversity and co-infection with other tick borne pathogens in ticks. Frontiers in Cellular and Infection Microbiology. 2017; 7: 36. https://doi.org/10.3389/fcimb.2017.00036
  • 8. Dzierzęcka M, Barszcz K. [Lyme Borreliosis in humans and domestic animals and wildlife]. Kosmos. 2010; 59(1-2): 91-98 (in Polish).
  • 9. National Institute of Public Health – National Institute of Hygiene, Department of Epidemiology and Surveillance of Infectious Disease. [Infectious diseases and poisonings in Poland in 2017] [Internet]. Warsaw: National Institute of Public Health – National Institute of Hygiene; 2018 [cited 2019 March 5]. Available from: http://wwwold.pzh.gov.pl/oldpage/epimeld/2017/Ch_2017.pdf (in Polish).
  • 10. National Institute of Public Health – National Institute of Hygiene, Department of Epidemiology and Surveillance of Infectious Disease. [Infectious diseases and poisonings in Poland in 2018] [Internet]. Warsaw: National Institute of Public Health – National Institute of Hygiene; 2019 [cited 2020 Feb 10]. Available from: http://wwwold.pzh.gov.pl/oldpage/epimeld/2018/Ch_2018.pdf (in Polish).
  • 11. Glinski Z, Kostro K. [Zoonoses – risk and challenge for veterinarians]. Życie Weterynaryjne. 2001; 76(02): 85-93 (in Polish).
  • 12. Wróblewska P, Adamczuk P, Galińska EM, Chmielewska-Badora J, Zwoliński J, Chmielewski J. [Mechanisms of infection by pathogens transmitted by ticks on the example of bacteria: Anaplasma phagocytophilum and Borrelia burgdorferi]. Medycyna Środowiskowa – Environmental Medicine. 2016; 19(2): 63-68 (in Polish).
  • 13. Kmieciak W, Ciszewski M, Szewczyk EM. [Tick-borne diseases in Poland: prevalence and difficulties in diagnostics]. Medycyna Pracy. 2016; 67(1): 73 (in Polish). https://doi.org/10.13075/mp.5893.00264
  • 14. http://wsse.waw.pl [Internet]. Warszawa: Wojewódzka Stacja Sanitarno-Epidemiologiczna. [Beware of ticks] [cited 2020 Jan 14]. Available from: http://wsse.waw.pl/aktualnoscikomunikaty/ostrzezenia-publiczne/uwaga-na-kleszcze-5889 (in Polish).
  • 15. Pomorski Z, Sitkowski W, Stanczyk J. [Ticks as vectors transferring infectious and invasive diseases. The role of the PREVENTIC-Virbac collar in eliminating ticks in dogs]. Magazyn Weterynaryjny. 1995; 1(04): 10-15 (in Polish).
  • 16. Singh SK, Girschick HJ. Molecular survival strategies of the Lyme diseases pirochete Borrelia burgdorferi. The Lancet Infectious Diseases. 2004; 4(9): 575-583. https://doi.org/10.1016/S1473-3099(04)01132-6
  • 17. Nordstrand A, Barbour AG, Bergström S. Borrelia pathogenesis research in the post-genomic and post-vaccine era. Current Opinion in Microbiology. 2000. 3(1): 86-92. https://doi.org/10.1016/s1369-5274(99)00056-9
  • 18. Wojciechowska-Koszko I, Mnichowska-Polanowska M. [Serological testing for Lyme disease in laboratory practice]. Postępy Mikrobiologii. 2015; 54(3): 283-290 (in Polish).
  • 19. Zbrzeźniak J, Paradowska-Stankiewicz I. Lyme disease in Poland in 2017. Przeglad Epidemiologiczny. 2019; 73(3): 317-320. https://doi.org/10.32394/pe.73.37
  • 20. Czupryna P, Moniuszko-Malinowska A, Pancewicz S, Garkowski A, Gościk J, Siemieniako A, et. al. Lyme disease in Poland – a serious problem?. Advances in Medical Sciences. 2016; 61(1): 96-100. https://doi.org/10.1016/j.advms.2015.10.007
  • 21. Pancewicz SA, Garlicki AM, Moniuszko-Malinowska A, Zajkowska J, Kondrusik M, Grygorczuk, et. al. [Diagnosis and treatment of tick-borne diseases recommendations of the Polish Society of Epidemiology and Infectious Diseases]. Przegląd Epidemiologiczny. 2016; 69: 421-428 (in Polish).
  • 22. Świderska-Kiełbik S, Krakowiak A, Wiszniewska M, Dudek W, Walusiak-Skorupa J, Krawczyk-Szulc P, et. al. [Health hazards associated with occupational exposure to birds]. Medycyna Pracy. 2009; 61(2): 213-222 (in Polish).
  • 23. Chmielewski T, Dunaj J, Gołąb E, Gut W, Horban A, Pancewicz S. [Laboratory diagnostics of tick-borne diseases. Recommendations of the Working Group]. Warszawa: Krajowa Izba Diagnostów Laboratroyjnych; 2014 (in Polish).
  • 24. Sykes RA, Makiello P. An estimate of Lyme borreliosis incidence in Western Europe. Journal of Public Health. 2016; 39(1): 74-81.
  • 25. Zajkowska JM, Dunaj J. [Lyme borreliosis. Challenges and difficulties of laboratory diagnosis]. Forum Zakażeń. 2013; 4(4): 223 (in Polish).
  • 26. Wojciechowska-Koszko I, Mnichowska-Polanowska M. [Serological testing for Lyme disease in laboratory practice]. Postępy Mikrobiologii. 2015; 54(3): 283-290 (in Polish).
  • 27. Lewandowicz-Uszyńska A, Naporowski P, Pasternak G, Witkowska D. [Identification of etiological agents of selected bacterial and viral infections based on serological tests]. Postępy Higieny Medycyny Doświadczalnej. 2018; 72: 1162-1178 (in Polish).
  • 28. Marques AR. Laboratory diagnosis of Lyme disease: advances and challenges. Infectious Disease Clinics. 2015; 29(2): 295-307. https://doi.org/10.1016/j.idc.2015.02.005
  • 29. Tokarska-Rodak M, Plewik D, Gałecka B, Domański R. The presence of anti-Borrelia burgdorferi antibodies in person with suspected Lyme disease. Health Prob Civil. 2016; 10(3): 15-20. https://doi.org/10.5114/hpc.2016.61362
  • 30. Wilske B,Fingerle V, Schulte-Spechtel U. Microbiological and serological diagnosis of Lyme borreliosis. FEMS Immunology & Medical Microbiology. 2007; 49(1): 13-21. https://doi.org/10.1111/j.1574-695X.2006.00139.x
  • 31. Pedrycz-Wieczorska A. Analysis of the methods for diagnosing borreliosis− Lyme disease. Health Prob Civil. 2017; 11(2): 80-86. https://doi.org/10.5114/hpc.2017.69022
  • 32. The Polish National Chamber of Laboratory Diagnosticians. [Laboratory diagnosis of tick-borne diseases] [Internet]. Warsaw: The Polish National Chamber of Laboratory Diagnosticians; 2014 [cited 2020 Jan 14]. Available from: https://kidl.org.pl/file/file/get?id=150_05kleszcze-z-okladka.pdf (in Polish).
  • 33. Gasiorowski J, Witecka-Knysz E, Knysz B, Gerber H, Gladysz A. [Diagnostics of Lyme disease]. Medycyna Pracy. 2007; 58(5): 439 (in Polish).
  • 34. Chmielewski T, Dunaj J, Gołąb E, Gut W, Horban A, Pancewicz S. [Laboratory diagnostics of tick-borne diseases. Recommendations of the Working Group]. Warszawa: Krajowa Izba Diagnostów Laboratoryjnych; 2014 (in Polish).
  • 35. Aguero-Rosenfeld ME, Wang G, Schwartz I, Wormser GP. Diagnosis of Lyme borreliosis. Clinical Microbiology Reviews. 2015; 18(3): 484-509.
  • 36. Marques AR. Laboratory diagnosis of Lyme disease: advances and challenges. Infectious Disease Clinics. 2015; 29(2): 295-307. https://doi.org/10.1016/j.idc.2015.02.005
  • 37. Ružić-Sabljić E, Cerar T. Progress in the molecular diagnosis of Lyme disease. Expert Review of Molecular Diagnostics. 2017; 17(1): 19-30. https://doi.org/10.1080/14737159.2016.1246959
  • 38. Schwaiger M, Peter O, Cassinotti P. Routine diagnosis of Borrelia burgdorferi (sensu lato) infections using a real-time PCR assay. Clinical Microbiology and Infection. 2001; 7(9): 461-469. https://doi.org/10.1046/j.1198-743x.2001.00282.x
  • 39. van Dam AP. Molecular diagnosis of Borrelia bacteria for the diagnosis of Lyme disease. Expert Opinion on Medical Diagnostics. 2011; 5(2): 135-149. https://doi.org/10.1517/17530059.2011.555396
  • 40. Weiner M, Żukiewicz-Sobczak W, Tokarska-Rodak M, Plewik D, Pańczuk A, Siłuch M, et al. Prevalence of Borrelia burgdorferi sensu lato in ticks from the Ternopil region in Ukraine. Journal of Veterinary Research. 2018; 62(3): 275-280. https://doi.org/10.2478/jvetres-2018-0039
  • 41. Karan L, Makenov M, Kolyasnikova N, Stukolova O, Toporkova M, Olenkova O. Dynamics of spirochetemia and early PCR Detection of Borrelia miyamotoi. Emerging Infectious Diseases. 2018; 24(5): 860. https://doi.org/10.3201/eid2405.170829
  • 42. Wodecka B, Skotarczak B. Identification of host blood-mealsources and Borrelia in field-collected Ixodes ricinus ticks in north-western Poland. Annals of Agricultural and Environmental Medicine. 2016; 23(1): 59-63. https://doi.org/10.5604/12321966.1196853
  • 43. Sabitova Y, Fomenko N, Tikunov A, Stronin O, Khasnatinov M, Abmed D, et al. Multilocus sequence analysis of Borrelia burgdorferi sensu lato isolates from Western Siberia, Russia and Northern Mongolia. Infection, Genetics and Evolution. 2018; 62: 160-169. https://doi.org/10.1016/j.meegid.2018.04.015
  • 44. Ružić-Sabljić E, Cerar T. Borrelia genotyping in Lyme disease. The Open Dermatology Journal. 2016; 10(1): 6-14. https://doi.org/10.2174/1874372201610010006
  • 45. Łyszcz M, Gałązka A. [Methods based on DNA PCR-amplification for evaluation of the soil microbial diversity]. Kosmos. 2017; 66(2): 193-206 (in Polish).
  • 46. Skotarczak B. [Molecular biology of the pathogens transferrred by ticks]. Warszawa: Wydawnictwo Lekarskie PZWL; 2006 (in Polish).
  • 47. Wiedro K, Stachowska E, Chlubeko D. [Real-time polymerase chain reaction (RT-PCR)]. Roczniki Pomorskiej Akademii Medycznej w Szczecinie. 2007; 53(3): 5-9 (in Polish).
  • 48. Abreu-Głowacka M, Koralewska-Kordel M, Michalak E, Żaba C, Przybylski Z. [Application of Y-SNPs in forensic genetics]. Archiwum medycyny sądowej i kryminologii. Organ Polskiego Towarzystwa Medycyny Sądowej i Kryminologii. 2011; 59(2): 161-169 (in Polish).
  • 49. Mackay IM. Real-time PCR in the microbiology laboratory. Clinical Microbiology and Infection. 2004; 10(3): 190-212. https://doi.org/10.1111/j.1198-743x.2004.00722.x
  • 50. Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Research. 2002; 30(6): 1292-1305. https://doi.org/10.1093/nar/30.6.1292
  • 51. Ćakić S, Veinović G, Cerar T, Mihaljica D, Sukara R, Ružić‐Sabljić E, et al. Diversity of Lyme borreliosis spirochetes isolated from ticks in Serbia. Medical and Veterinary Entomology. 2019; 33(4): 512-520. https://doi.org/10.1111/mve.12392
  • 52. Lejal E, Moutailler S, Šimo L, Vayssier-Taussat M, Pollet T. Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus. Parasites & Vectors. 2019; 12(1): 152. https://doi.org/10.1186/s13071-019-3418-7
  • 53. Kubiak K, Dziekońska-Rynko J, Szymańska H, Kubiak D, Dmitryjuk M, Dzika E. Questing Ixodes ricinus ticks (Acari, Ixodidae) as a vector of Borrelia burgdorferi sensu lato and Borrelia miyamotoi in an urban area of north-eastern Poland. Experimental and Applied Acarology. 2019; 78(1): 113-126. https://doi.org/10.1007/s10493-019-00379-z
  • 54. Lagal V, Portnoï D, Faure G, Postic D, Baranton G. Borrelia burgdorferi sensu stricto invasiveness is correlated with OspC–plasminogen affinity. Microbes and Infection. 2006; 8(3): 645-652. https://doi.org/10.1016/j.micinf.2005.08.017
  • 55. Al-Deeb MA, Enan MR. Genetic diversity in the camel tick hyalomma dromedarii (Acari: Ixodidae) based on mitochondrial cytochrome c oxidase subunit I (COI) and randomly amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Advances in Entomology. 2018; 6(4): 285-294.
  • 56. Jabbari N, Glusman G, Joesch-Cohen LM, Reddy PJ, Moritz RL, Hood L, et al. Whole genome sequence and comparative analysis of Borrelia burgdorferi MM1. PloS One. 2018; 13(6): e0198135. https://doi.org/10.1371/journal.pone.0198135
  • 57. Obiegala A, Król N, Oltersdorf C, Nader J, Pfeffer M. The enzootic life-cycle of Borrelia burgdorferi (sensu lato) and tick-borne rickettsiae: an epidemiological study on wild-living small mammals and their ticks from Saxony, Germany. Parasites & Vectors. 2017; 10: 115. https://doi.org/10.1186/s13071-017-2053-4
  • 58. Bonnet S, Michelet L, Moutailler S, Cheval J, Hébert C, Vayssier-Taussat M, et al. Identification of parasitic communities within European ticks using next-generation sequencing. PLoS Neglected Tropical Diseases. 2014; 8(3): e2753. https://doi.org/10.1371/journal.pntd.0002753

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8597b117-e67e-4561-a27a-47ab877e67a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.