PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 04 | 1 |

Tytuł artykułu

Maximum daily rainfall analysis at selected meteorological stations in the upper Lusatian Neisse River basin

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The scope of this study was to assess the usefulness of top probability distributions to describe maximum rainfall data in the Lusatian Neisse River basin, based on eight IMWM-NRI meteorological stations. The research material was composed of 50-year precipitation series of daily totals from 1961 to 2010. Misssing measurement data were estimated using a weighted average method. Homogeneity for refilled data were investigated by precipitation double aggregation curve. Correlation between the measurement data varied from 96 to 99% and did not indicate a violation of the homogeneity of rainfall data series. Variability of recorded daily precipitation maxima were studied by linear regression and non-parametric Mann-Kendall tests. Long-term period changes at maximum rainfalls for four stations remained statistically insignificant, and for the other four were significant, although the structure of maximums was relatively similar. To describe the measured data, there were used the Fréchet, Gamma, Generalized Exponential Distribution (GED), Gumbel, Log-normal and Weibull distributions. Particular distribution parameters were estimated using the maximum likelihood method. The conformity of the analyzed theoretical distributions with measured data was inspected using the Schwarz Bayesian information criterion (BIC) and also by the relative residual mean square error (RRMSE). Among others, the Gamma, GED, and Weibull distributions fulfilled the compliance criterion for each meteorological station respectively. The BIC criterion indicated GED as the best; however differences were minor between GED on the one hand and the Gamma and Weibull distributions on the other. After conducting the RRMSE analysis it was found that, in comparison to the other distributions, GED best describes the measured maximum rainfall data.

Wydawca

-

Rocznik

Tom

04

Numer

1

Opis fizyczny

p.53-63,fig.,ref.

Twórcy

  • Institute of Meteorology and Water Management - National Research Institute, Podlesna 61, 01-673 Warsaw, Poland
  • Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland
autor
  • Czech Hydrometeorological Institute, Hydrological Database and Water Balance, Na Sabatce 17, 143 06 Prague 412, Czech Republic

Bibliografia

  • Adynkiewicz-Piragas M., Kryza J, Krasowski W., Lejcuś I., Lisowski J., Otop I., Zdralewicz I., 2011, Lignite mining in the Lusatian Neisse River basin, Detailed model based impact studies on water resources, IMGW-PIB, Warszawa, 60 pp.
  • Ay M., Kisi O., 2015, Investigation of trend analysis of monthly total precipitation by an innovative method, Theoretical and Applied Climatology, 120 (3), 617-629, DOI: 10.1007/s00704-014-1198-8
  • Bartels H., Dietzer B., Malitz G., Albrecht F.M., Guttenberger J., 2005, KOSTRA DWD-2000 Starkniederschlagshöhen für Deutschland (1951-2000), Deutscher Wetterdienst, Offenbach, 53 pp.
  • Ben-Zvi A., 2009, Rainfall intensity-duration-frequency relationships derived from large partial duration series, Journal of Hydrology, 367 (1-2), 104-114, DOI: 10.1016/j.jhydrol.2009.01.007
  • Coles S., 2001, An introduction to statistical modeling of extreme values, Springer Series in Statistics, Springer-Verlag London, 209 pp.
  • De Luís M., Raventós J., Gonzáles-Hidalgo J.C., Sánchez J.R., Cortina J., 2000, Spatial analysis of rainfall trends in the region of Valencia (East Spain), International Journal of Climatology, 20 (12), 1451-1469, DOI: 10.1002/1097-0088(200010)20:12<1451::AID-JOC547>3.0.CO;2-0
  • Dumieński G., Pasiecznik-Dominiak A., Tiukało A., 2015, Social-economical assessment of Polish communities to flood threat (in Polish), [in:] Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska, Tom 6, A. Kotowski, K. Piekarska, B. Kaźmierczak (eds.), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 100-125
  • Gupta R.D., Kundu D., 2007, Generalized exponential distribution: existing results and some recent developments, Journal of Statistical Planning and Inference, 137 (11), 3537-3547, DOI: 10.1016/j.jspi.2007.03.030
  • Hänsel S., Petzold S., Matschullat J., 2009, Precipitation trend analysis for Central Eastern Germany 1851-2006, [in:] Bioclimatology and Natural Hazards, K. Střelcová, J. Škvarenina, M. Blaženec (eds.), International Scientific Conference, Poľana nad Detvou, Slovakia, 29-38
  • IPCC, 2014, Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part B: Regional Aspects, Europe, R. Sari Kovats, Riccardo Valentini (eds.), IPCC, Geneva, Switzerland, 1267-1326, available at: http://www.ipcc.ch/pdf/assessmentreport/ar5/wg2/WGIIAR5-Chap23_FINAL.pdf (data access 01.06.2016)
  • Jakubowski W., 2015, On the instabilities of estimated distributions of the POT (Peak Over Threshold) low flow characteristics, Meteorology Hydrology and Water Management, 3 (2), 33-38
  • Jelonek L., Wrzeszcz L., Zawiślak J., Walther P., Winkler U., Wortha S., Srejber J., Petr J., 2010, Hochwasser im Einzugsgebiet der Lausitzer Neiße, 7-10 August, Polnisch-Deutsch-Tschechische Expertengruppe, Wrocław-Prague-Dresden, 50 pp.
  • Kaźmierczak B., Kotowski A., 2014, The influence of precipitation intensity growth on the urban drainage systems designing, Theoretical Applied Climatology, 118 (1), 285-296, DOI: 10.1007/s00704-013-1067-x
  • Kaźmierczak B., Kotowski A., 2015, The suitability assessment of a generalized exponential distribution for the description of maximum precipitation amounts, Journal of Hydrology, 525, 345-351, DOI: 10.1016/j.jhydrol.2015.03.063
  • Kaźmierczak B., Kotowski A., Wdowikowski M., 2014, Trend analysis of annual and seasonal precipitation amounts in the Upper Odra catchment (in Polish), Ochrona Środowiska, 36(3), 49-54
  • Kaźmierczak B., Wdowikowski M., 2016, Maximum rainfall model based on archival pluviographic records – case study for Legnica (Poland), Periodica Polytechnica Civil Engineering, 8341, 1-8, DOI: 10.3311/PPci.8341
  • Kim D., Zhang J., 2011, Differential ability of annual maximum series and peaks-over-threshold series to detect trend in extreme daily rainfall – a simulation approach, 19th Conference on Applied Climatology, 17-21 July, Asheville, USA, available at https://ams.confex.com/ams/19Applied/webprogram/Paper190504.html (data access 01.06.2016)
  • Konishi S., Kitagawa G., 2008, Information criteria and statistical modeling, Springer Series in Statistics, Springer-Verlag New York, USA, 276 pp., DOI: 10.1007/978-0-387-71887-3
  • Kotowski A., Kaźmierczak B., 2013, Probabilistic models of maximum precipitation for designing sewerage, Journal of Hydrometeorology, 14 (6), 1958-1965, DOI: 10.1175/JHMD-13-01.1
  • Kotowski A., Kaźmierczak B., Dancewicz A., 2010, The modelling of precipitations for the dimensioning of sewage systems (in Polish), Studia z Zakresu Inżynierii, 68, 170 pp.
  • Kuchar L., Szalińska W., Iwański S., Jelonek L., 2014, A modeling framework to assess the impact of climate change on a river runoff, Meteorology Hydrology and Water Management, 2 (2), 49-64
  • Kyselý J., Picek J., 2007, Regional growth curves and improved design value estimates of extreme precipitation events in the Czech Republic, Climate Research, 33 (3), 243-255, DOI: 10.3354/cr033243
  • Ledvinka O., Lamacova A., 2015, Detection of field significant long-term monotonic trends in spring yields, Stochastic Environmental Research and Risk Assessment, 29 (5), 1463-1484, DOI: 10.1007/s00477-014-0969-1
  • Longobardi A., Villani P., 2010, Trend analysis of annual and seasonal rainfall time series in the Mediterranean area, International Journal of Climatology, 30 (10), 1538-1546, DOI: 10.1002/joc.2001
  • Lünich K., Pluntke T., Niemand C., Adynkiewicz-Piragas M., Zdralewicz I., Otop I., Miszuk B., Kryza J., Lejcuś I., Strońska M., 2014a, Lusatian Neisse – The climate and characteristics of the region (in Polish), Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden, 75 pp.
  • Lünich K., Prasser M., Niemand C., Adynkiewicz-Piragas M., Zdralewicz I., Otop I., Miszuk B., Kryza J., Lejcuś I., Strońska M., 2014b, Lausitzer Neiβe – Wasserressourcen in der Region, Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden, 137 pp.
  • Müller M., Kaspar M., 2014, Event-adjusted evaluation of weather and climate extremes, Natural Hazards and Earth System Sciences, 14, 473-483, DOI: 10.5194/nhess-14-473-2014
  • Onyutha C., 2012, Statistical modelling of FDC and return periods to characterise QDF and design threshold of hydrological extremes, Journal of Urban and Environmental Engineering, 6 (2), 132-148, DOI: 10.4090/juee.2012.v6n2.132148
  • Onyutha C., Willems P., 2015, Empirical statistical characterization and regionalization of amplitude-duration-frequency curves for extreme peak flows in the Lake Victoria basin, East Africa, Hydrological Sciences Journal, 60 (6), 997-1012, DOI: 10.1080/02626667.2014.898846
  • Różdżyński K., Jurczak K., Grzelak-Agaciak E., Górka A., Trzebunia J., Suchecki S., Lech H., Kieloch B., Stepko W., Derek P., Kamińska M., Ragin G., Woźniak Ł., Letachowicz J., 2015, Instructions for the meteorological stations (in Polish), IMGW-PIB, Warszawa, 442 pp.
  • S̆alek M., 2000, The radar and raingauge merge precipitation estimate of daily rainfall – first results in the Czech Republic, Physics and Chemistry of the Earth (B), 25 (10-12), 977-979, DOI: 10.1016/S1464-1909(00)00136-2
  • Shinyie W.L., Ismail N., Jemain A.A., 2014, Semi-parametric estimation based on second order parameter for selecting optimal threshold of extreme rainfall events, Water Resources Management, 28 (11), 3489-3514, DOI: 10.1007/s11269-014-0684-1
  • Suligowski R., 2013, The spatial distribution of probable maximum precipitation (PMP) over the Kielce Upland in one-day and multi-days intervals, Meteorology Hydrology and Water Management, 1 (1), 39-44
  • Szczepanek R., 2003, Spatio-temporal structure of precipitation in the mountains catchment (in Polish), PhD thesis, Cracow University of Technology, Kraków, 138 pp., available at http://holmes.iigw.pl/~rszczepa/publikacje/doktorat_R.Szczepanek.pdf (data access 01.06.2016)
  • Wi S., Valdés B.J., Steinschneider S., Kim T.-W., 2016, Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima, Stochastic Environmental Research and Risk Assessment, 30 (2), 583-606, DOI: 10.1007/s00477-015-1180-8
  • Węglarczyk S., 2010, Statistics in environmental engineering (in Polish), Cracow University of Technology, Kraków, 375 pp.
  • Wdowikowski M., Kaźmierczak B., 2015, Comparison of methods to select the maximum values to develop a mathematical model of extremely high rainfall in the river basin, Acta Hydrologica Slovaca, 16, 190-198
  • WMO, 2012, Guide to meteorological instruments and methods of observation, WMO-No. 8, 2008 edition, updated in 2010, 151-173
  • Yilmaz A.G., Hossain I., Perera B.J.C., 2014, Effect of climate change and variability on extreme rainfall intensity-frequency-duration relationships: a case study of Melbourne, Hydrology and Earth System Sciences, 18, 4065-4076, DOI: 10.5194/hess-18-4065-2014

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8566b875-fce2-42cd-87ee-db4518aedba6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.