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Abstract. Precise determination of forest resources is one of the most important tasks in conducting sustainable forest 
management. Accurate information about the forest's resources allows for a better planning of current and future management 
as well as conservation activities. Such precise information is needed by both, individual forest managers and for developing 
the national forest policy. In recent years, interest in the use of remote sensing in forest inventory has significantly increased. 
Remote sensing allows for non-invasive measurements and the automation of data processing. The most accurate source of 
remote sensing data at the level of the sample plot is terrestrial laser scanning (TLS). Its use in forest inventory has been 
studied for about two decades.

This paper aims to introduce studies on state of the art TLS technology as well as provide an overview of research conduc-
ted in stands within the temperate climate zone. This article furthermore discusses issues such as TLS data acquisition, data 
processing and presents results for the estimation of tree biometric features.
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1. Introduction

The precise determination of forest resources is one
of the most important tasks of sustainable forest manage-
ment. Accurate information on resources enables planning 
of current and future economic and conservation activities. 
This knowledge is also needed for the implementation of 
sustainable forest management policies. Depending on the 
purpose, availability of financial resources and required 
accuracy, many methods of forest inventory are distin-
guished. Because of the high cost and time involved in 
field work, foresters often use statistical and mathemati-
cal methods based on measurements on circular sample 
plots. Field crews typically measure characteristics such 
as diameter at breast height (DBH) and tree height, and 
determine the species and location of each tree relative to 
the centre of the sample plot. The time-consuming nature 
of field work with conventional tools (e.g. tree callipers, 
compass, altimeter) is driving the search for new, alterna-

tive solutions that reduce the cost and labour intensity of 
inventory and increase its objectivity.

In recent years, a number of scientific papers have been 
published on the use of remote sensing technologies for 
forest inventories, in particular Light Detection and Ran-
ging (LiDAR) technology. The product of this technology 
is a three-dimensional image of reality, consisting of mil-
lions of points that form a 'point cloud'. This allows precise 
measurement of the dimensions and structure of scanned 
objects (Będkowski 2004; Wężyk 2006). Laser scanners 
are integrated with different types of platforms, e.g. ae-
rial platform – airborne laser scanning (ALS) or stationary 
survey tripod – terrestrial laser scanning (TLS). In forest 
management, due to the vastness of forest areas, data col-
lection by ALS technology is most often considered, as it 
provides data for entire forest areas in a short period of 
time (Wężyk 2006; Stereńczak 2010; Będkowski et al. 
2011). Many papers have been written on 'enhanced forest 
inventories' that use ALS data together with field measure-
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ments to estimate stand characteristics of individual forest 
compartments with high accuracy (White et al. 2016). In 
some countries, ALS forest inventory methods are used 
in forestry practice, e.g. Norway, Finland, Denmark and 
Sweden (Kangas et al. 2018). The most commonly used 
forest inventory method using ALS data is the 'area-based 
approach' (ABA), which uses relationships between point 
cloud characteristics and ground measurements using sta-
tistical methods (Næsset 2002; White et al. 2013; Hawryło 
2017). This method allows the development of a predictive 
model for each surveyed stand characteristic determined 
from field measurements. Once the mathematical models 
have been developed, the final step is to apply them to the 
entire scanned area.

ALS makes it possible to obtain data for vast areas 
quickly and with relatively little effort. Moreover, the 
use of ALS together with the field data requires a smal-
ler number of sample plots compared to the traditional 
statistical and mathematical method, while maintaining 
the assumed precision of the estimates (Stereńczak et al. 
2018). However, it should be emphasised that this me-
thod requires some field measurements to calibrate the 
statistical model, as woody parts of vegetation, including 
stems, cannot be directly observed using ALS technology 
(White et al. 2016). 

A complementary data source for airborne measure-
ments is TLS data. TLS data represent the image of a 
stand as seen from the ground beneath the tree canopy. 
The result of using TLS is a very dense point cloud with 
measurement accuracy in millimetres (Zawiła-Niedź-
wiecki et al. 2008, Wężyk 2010). Therefore, this tech-
nology is considered the most accurate source of remote 
sensing data for sample plots (Liang et al. 2018a). An 
additional advantage of using TLS is the automated and 
very fast way of obtaining data.

The use of TLS in forestry has a relatively short hi-
story. The first terrestrial laser scanner was introduced 
in 1998 (Liang et al. 2016). Pioneering scientific work 
on the use of TLS in forestry took place at the turn of 
the 20th and 21st centuries (Tanaka et al. 1998; Aschoff, 
Spiecker 2004; Henning, Radtke 2006). The main impe-
tus for the use of TLS in forestry was initially to impro-
ve field work on sample plots by replacing some of the 
manual measurements. Early work addressed automatic 
or semi-automatic solutions based on TLS data aimed at 
measuring basic biometric characteristics of trees, such 
as DBH, height and location (Maas et al. 2008; Brolly, 
Kiraly 2009). With the increasing computational power 
of computers and the development of data processing 
algorithms, new opportunities arose for the use of TLS 
data. They have become a valuable source of information, 

allowing for the automatic measurement of biometric tra-
its that previously could not be measured directly using 
traditional forest inventory methods. Many papers have 
been published on methods for automatically determining 
tree volume and biomass based on TLS data, in which au-
thors report accuracy comparable to the best national al-
lometric equations (Astrup et al. 2014; Liang et al. 2014). 
The potential of this technology has also been recogni-
sed in forest ecology research. The suitability of TLS has 
been demonstrated for determining LAI (leaf area index) 
and studying the dynamics of changes in stand gaps and 
crown structure (Liang et al. 2016).

Polish scientific centres have also been studying the use 
of TLS in forestry for several years. These studies mainly 
concern forest inventory issues (Chirrek et al. 2007; Wężyk 
et al. 2007; Chmielewski et al. 2010; Wężyk, Sroga 2010; 
Zasada et al. 2013; Ratajczak, Wężyk 2015), but also such 
as determination of DBH distribution (Zasada, Stereńczak 
2013), urban greenery inventory (Tompalski 2009) and mo-
nitoring the condition of natural monument trees (Wężyk et 
al. 2015).

This paper is a synthetic review of research on the use 
of TLS technology conducted in temperate tree stands for 
about 20 years. In this paper, the authors focused parti-
cularly on the practical aspects of using TLS technology 
for forest inventory and on summarising the achieved me-
asurement accuracy of the main biometric characteristics 
of trees. In the Discussion section, the authors evaluate 
the possibility of introducing this technology into forestry 
practice.

2. How TLS works and types of scanners

TLS scanners work by measuring the distance and the 
horizontal and vertical angle between the device and the 
object under investigation using light beams (lasers) emit-
ted by the device.

TLS measurements are made from a stationary po-
sition in designated locations, with the scanner placed on 
a survey tripod. During operation, the scanner registers 
the image of the surroundings, rotating around its own 
axis. The measurements performed by the device allow to 
determine the X, Y, Z coordinates of millions of measure-
ment points, which form the so-called point cloud. In ad-
dition to registering the point coordinates, terrestrial laser 
scanners also record the intensity of the reflected signal, 
i.e. the value of the energy of the returning light beam 
(reflected from the object). Digital cameras are also inte-
grated in TLS scanners, which makes it possible to assign 
real colours (RGB) from the digital images to each point 
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of the cloud (Wężyk 2010). Currently, several models 
of terrestrial laser scanners are available on the market, 
which can be divided into two main groups: time-of-fli-
ght (ToF) and phase-shift scanners. The main feature that 
distinguishes these two types of scanners is the distance 
measurement technology.

Phase-shift scanners are believed to measure more accu-
rately than ToF scanners; however, the data obtained using 
them is subject to interference, i.e., the presence of noise 
in the obtained data. It is also worth noting that phase-shi-
ft scanners usually have a smaller range of data measure-
ment compared to ToF scanners (Wężyk 2010). A major 
advantage of ToF scanners is the ability to register multiple 
reflections of the laser beam. This is especially important 
when scanning objects near vegetation (Liang et al. 2016). 
For example, when a laser beam falls on the outer edge of a 
trunk or thin branch, part of the beam bounces off it and the 
rest of the beam penetrates further and registers the subsequ-
ent objects encountered. Currently, there are ToF scanners 
on the market that can register up to 15 reflections of the 
laser beam (Riegl 2020).

To learn more about the types of scanners and the prin-
ciples of their operation, the authors refer to the 
publications by Wężyk (2006, 2010), Dassot et al. (2011) 
or Liang et al. (2016).

3. Acquiring TLS data

The following subsections describe the general specifi-
cations of TLS data acquisition in the forest environment 
for three levels: sample plot, individual tree and whole 
stand.

3.1 Sample plots

Scanning sample plots using TLS technology is ty-
pically performed with a single-scan (SS) or multi-scan 
(MS) mode of data acquisition. In SS mode, the scan-
ner is located in the centre of the sample plot. The data 
acquired in this mode represents an image of the stand 
from one perspective, i.e., as seen from the centre of the 
sample plot. In the MS mode, data is collected from mul-
tiple positions – usually from the centre and outside of 
the plot or by scanning only from outside positions. When 
deciding to collect data in this mode, artificial referen-
ce markers (spheres or targets) usually need to be set up 
during fieldwork to allow for later alignment of the data. 
This method of data collection ensures much greater data 
completeness compared to the SS mode. After alignment, 
data acquired in the MS mode represent a comprehensive, 

fully three-dimensional image of the sample plot (Wężyk 
2010; Liang et al. 2016).

When comparing the two methods of data collection, it 
should be noted that the SS mode is much faster. Curren-
tly, it takes about 20 min to perform such a measurement 
on a sample plot. The measurement time depends mainly 
on the class of laser scanner used and the settings used 
during operation. The data acquisition process itself takes 
between 2 and 10 min, and to this time must be added the 
time for setting up, starting, and configuring the scanner, 
which is about 5–10 min (Liang et al. 2016). The main 
disadvantage of data acquisition in SS mode is the high 
probability of the so-called 'occlusion effect' (Zasada et 
al. 2013). This effect causes some trees to be missed in 
the point cloud of the sample plot being mapped (Fig. 1)
because trees in the same azimuth relative to the centre 
of the plot occlude each other. This effect increases with 
increasing distance from the scanner, i.e. the larger the 
radius of the sample plot, the more likely this effect oc-
curs. The authors state in their papers that the percentage 
of undetected trees in a sample plot using the SS mode 
can range from 0 to 46%, with stand structure and sample 
plot size reported as the factors that have the greatest in-
fluence on this phenomenon (Astrup et al. 2014). In com-
parison, four or five scan positions are typically used to 
map the sample plot in MS mode. The scan positions are 
arranged in such a way that they map all trees from all 
sides as much as possible. Data obtained in this mode are 
considered the most accurate and also provide a complete 
three-dimensional image of the stand (the entire shape and 
stem area of each tree is mapped). The disadvantages of 
this mode include: higher labour intensity for field work, 
longer time for processing and aligning the point clouds, 
and a much larger amount of data collected. Currently, it 
is estimated that it takes about 1 h to measure a sample 
plot in MS mode. In MS mode data acquisition, an ad-
ditional step of aligning the scans takes place during the 
initial processing. This is done using special software in 
an automatic or semi-automatic way (Liang et al. 2016).

3.2. Indivdual trees

TLS data can also be obtained on individual trees (Fig. 
2). Such data can be useful in improving or developing al-
lometric equations for characteristics such as whole-tree 
volume or biomass. The major advantage of using TLS 
technology for these purposes is the non-invasiveness, 
speed, and precision with which information on the mor-
phological stem curve is obtained. Scanning of individu-
al trees is usually performed in MS mode to obtain data 
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with the highest level of detail. During fieldwork, scan-
ner locations are positioned around the tree. Raumonen et 
al. (2013) suggest taking measurements from no less than 
three positions. However, it should be noted that the num-
ber of scanner positions should be chosen depending on the 
size of the object to be scanned and the planned level of 
detail of the data (Wilkes et al. 2017). For example, Wężyk 
et al. (2015) used 4 to 23 scanner positions during a field 
survey of the natural monument the Bartek Oak. In 2020, 
employees of the Forest Research Institute (IBL) scanned 
another natural monument – the Mieszko Oak – from 10 
positions, which was sufficient to accurately register the 
appearance of the entire tree.

3.3. Whole stands

The MS mode is also used to scan entire stands (Fig. 3). 
However, the procedure for scanning large areas is usually 
more complicated, as the reference markers usually need 
to be repositioned when the locations of the scanning po-
sitions change. For more information on this, the authors 
refer readers to a paper by Wilkes et al. (2017) describing 

Figure 2. TLS point cloud representing a 
single tree: Black alder Alnus glutinosa 
Gaertn. color schema: natural colors 
(RGB), visualization was made in Cloud-
Compare    software   (Girardeau-Montaut 
2020).

Figure 1. TLS point cloud representing sample plot in a Scots pine stand Pinus sylvestris L.: A – single-scan mode (SS), B – multi-scan mode 
(MS). The black rectangle shows unregistered trees in SS mode (occlusion effect).  Color scheme: Intensity values, visualization was made 
in CloudCompare software (Girardeau-Montaut 2020).
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Figure 3. TLS point cloud representing Scots pine stand Pinus sylvestris. A – color scheme: RGB values, B – color scheme: RGB values 
and different colors for automatically detected tree stems, C –  automatically detected tree stems, visualization was made in CloudCompare 
software (Girardeau-Montaut 2020).
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their experience from 27 field surveys in which they col-
lected TLS data for large forest areas. They recommend 
scanning tree stands with a pre-planned 10×10 m grid 
where each node of the grid being the location of the scan-
ner, and also recommend setting up about 120 scanning 
stations for stands of one hectare. Their experience indi-
cates that conducting a TLS scan of a stand with such an 
area takes between 3 and 8 days for a crew of three in the 
field. It should be noted, however, that most of this work 
has been done in tropical rainforests, which are among the 
most complex stands in terms of vertical structure. In ad-
dition, the intensity of the work depends on many factors 
related to both the stand structure and the type of scan-
ner used. The experience of IBL staff participating in a 
field study of TLS data collection for two 1 ha forest plots 
shows that under the conditions of Polish stands, a group of 
three people may need 2 to 4 days for such measurements 
of one plot, assuming more than 100 scanning stations for 
one plot and the use of Riegl VZ-400 or Riegl VZ-400i 
ToF scanners, which together with the software allow ali-
gnment of scans without the need to use reference markers 
during fieldwork.

4. Planning a TLS survey

When planning a measurement acquisition with TLS, the
external environmental factors should be considered in ad-
dition to the technical aspects, such as the determination of 
the scan parameters and the selection of the appropriate data 
acquisition mode.

4.1. Weather conditions

When planning a TLS field survey, prevailing weather 
conditions must be considered (Dassot et al. 2011; Vaaja et 
al. 2016). Optimal conditions for TLS are windless days with 
no precipitation, moderate temperatures and low humidity. 
Wind is a factor that can significantly affect the quality of 
the data collected, especially within tree canopies. Swaying 
tree tops during the scan are captured in many places, re-
sulting in image distortion in the upper parts of the stand. 
According to the study by Seidel et al. (2012), optimal scan-
ning conditions occur when the average wind speed does not 
exceed 5 m/s. Vaaja et al. (2016) show that a wind speed of 
9 m/s only does not significantly affect the stem parameters 
of the lower part of the tree (the part of the stem below one 
third of the total tree height).

TLS can be conducted in light rain or fog; however, this 
is not recommended due to poor data quality and the po-
tential for distortions, i.e. false reflections in the obtained 

data. Scanning is also not recommended when snow cover 
is present. Possible layers of snow deposited on the stem 
(absorbing the laser beams emitted by the scanner) may lead 
to errors in determining the diameter or volume of the stem 
(Dassot et al. 2011).

4.2. Vegetation period

An important aspect of planning a TLS survey is also 
the choice of an appropriate scanning date. For surveys 
that aim to obtain the most accurate data possible on the 
morphology of the woody parts of trees and to estimate 
their volume or biomass, the best times to scan are early 
spring or late autumn. During these periods, deciduous 
species lack foliage, so the effect of mutual obscuration 
is much smaller. Data collection during the leaf-off period 
provides a much better representation of the branches in 
the crowns of deciduous species and eliminates the poten-
tial effect of the lower parts of the stems being occluded 
by a layer of shrubs from the understory. This aspect is 
also important when scanning in MS mode with artificial 
reference markers. In the leaf-off period, the risk of the 
markers being occluded by leaves from lower forest lay-
ers is reduced.

5. TLS data processing methods

TLS data processing for dendrometric tree analysis can
be divided into two main processes: tree detection in the 
point cloud and the development of three-dimensional mo-
dels of individual trees.

5.1 Detection of trees

In recent years, a number of studies on automatic al-
gorithms for detecting trees in a point cloud have been 
developed. In this context, tree detection can be under-
stood either as an indication of the location of trees and 
their thickness (e.g. DBH) or as an attempt to reconstruct 
the overall shape and architecture of trees. The first algo-
rithms were based on searching geometric patterns from 
the generated two-dimensional images representing the 
horizontal cross-section through a tree stand. The first 
stage of these methods consists of placing a thin hori-
zontal slice of a three-dimensional point cloud on the 
horizontal plane. In the next stage, trees are detected by 
clustering groups of points (Wężyk et al. 2007) and sear-
ching for geometric patterns, e.g. circles (Chmielewski 
et al. 2010, Lindberg et al. 2012). These methods assume 
that the shape of a point cloud representing tree trunks 
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from a horizontal slice is similar to a circle or semicircle. 
The advantages of these methods include their relative 
simplicity and high computational speed. However, these 
algorithms encounter some difficulties in complex stands 
with high tree density or undergrowth, as the mapped po-
ints of the non-woody parts of the stem may be misclas-
sified as a stem (Zhang et al. 2019). To remedy this, some 
researchers have focused on accurately identifying trunks 
or woody tree parts directly in the point cloud. In their 
work on distinguishing the woody or leafy parts of stems 
in point clouds, authors use different approaches. Côté et 
al. (2009) assumed that the woody parts of trees have a hi-
gher reflectance intensity than leaves and tried to exploit 
this fact in the classification. However, it should be noted 
that the reflection intensity of the laser beam depends not 
only on the spectral characteristics of the scanned ob-
jects, but also on the angle of the laser beam, the distance 
to the scanned object or its roughness. Normalising the 
value of reflection intensity is again a complicated and 
time-consuming process (Zhang et al. 2019). The use of 
dual wavelength laser scanners has also been tested (Li 
et al. 2013; Danson et al. 2014). The authors of these pa-
pers assumed that due to the distinct differences in the 
wavelength properties of leaves and woody parts of trees, 
they could be distinguished in the two wavelength bands. 
The accuracy of the classification was not discussed in 
detail in these papers. However, work on the development 
of such scanners is still in the testing phase and the ava-
ilability of such devices is currently limited.

Another approach is to use the local geometric featu-
res of point clouds. In these methods, the point cloud is 
divided into small subsets in a first step. Iteratively, for 
each point, groups of points closest to it are selected, 
defined by the radius of the sphere or by the number of 
nearest neighbours around the central point. For selec-
ted subsets, geometric features are computed using the 
principal component analysis (PCA) algorithm (Burt et 
al. 2018, Zhou et al. 2019). For trunk detection, geome-
tric features of point clouds such as linearity, flatness, and 
verticality were used. It was assumed that tree trunks in a 
point cloud are generally vertical objects, are linear, and 
form relatively flat surfaces at a small scale (Liang et al. 
2012; Oloffson, Holmgren 2016). The geometric features 
are computed for each point in the cloud based on the set 
of neighbouring points determined by the radius of the 
distance parameter or the number n of nearest neighbours. 
The size of the selected subset affects the discrimination 
of the objects. For this reason, in some studies, multi-sca-
le geometric features were used to classify the point cloud 
into woody and soft parts, i.e., leaves. Classification al-

gorithms were applied in the studies, using machine lear-
ning methods among others (Vicari et al. 2019; Zhou et 
al. 2019). A major advantage of these methods, in contrast 
to the previous ones, is the use of geometric information 
from the point cloud, which should be relatively similar 
regardless of the specifics of the scanner used. However, 
it should be noted that these methods require more com-
putational power.

5.2 Three-dimensional tree modelling

In the analysis of both individual trees and groups of 
trees in sample plots or whole stands, the basic unit being 
analysed is the quantitative structure model (QSM) of 
a single tree. Such a model is assumed to represent the 
morphology of the tree as accurately as possible and to 
be fully measurable (Raumonen et al. 2013; Hackenberg 
et al. 2015). These properties allow accurate determina-
tion of the thickness and volume of the above ground tree 
components.

Liang et al. (2016) distinguish five levels of detail (LoD) 
of digital tree models that allow different characterizations 
of the modelled trees (Table 1).

Depending on the level of details, tree models are used 
for different tasks. For the purpose of forest inventory, the 
use of models with LoD from 1 to 3 are mainly considered 
(Fig. 4).

The use of conventional tools in a traditional forest 
inventory allows the collection of information at the LoD1 
level, where each tree or a selected group of trees is descri-
bed by two basic characteristics height and DBH. LoD2-le-
vel models are much more detailed, as the thickness of the 
main stem can be measured at each height for which TLS 
data have been collected. Such models allow stem volume 
to be measured directly and accurately. LoD3 models also 
take into account branches, allowing the total biomass and 
architectural features of trees to be determined. Building 
such models based on TLS data requires scanning from 
many positions, which significantly increases the cost of 
data acquisition. LoD3 and LoD4 models are used in in-
dividual tree modelling, while LoD5 models are used in 
computer graphics, but current TLS technology does not 
allow obtaining detailed data, such as characterising all 
tree leaves (Liang et al. 2016).

Many approaches can be found in the literature to ge-
nerate three-dimensional tree models from a point cloud. 
The best results are obtained with two approaches. The 
first is based on the direct reconstruction of the outer 
surface of objects (meshing), resulting in a three-dimen-
sional, uniform, continuous surface that represents the 



182 G. Krok et al. / Leśne Prace Badawcze, 2020, Vol. 81 (4): 175–194

Figure 4. Presentation of details of tree models: A – TLS point cloud, B – LoD1 tree model, C – LoD2 tree model, D – LoD3 tree model, 
visualization was made in CloudCompare software (Girardeau-Montaut 2020)

Table 1. Parameters characterizing tree models for given levels of detail, according to Liang et al. (2016)

Level of details Parameters Predecessor included

LoD1 tree height
diameter at breast height

-

LoD2
tree position

3D model of the main stem
LoD1

LoD3
2nd level branches  

(directly connected with the main stem)
LoD1 + LoD2 

LoD4
3rd  level branches  

(connected with the 2nd level branches)
LoD1 + LoD2 + LoD3

LoD5
leaves

more details of branches (higher level branches)
LoD1 + LoD2 + LoD3 + LoD4
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appearance of a tree. This model represents the exter-
nal shape of the bark and all its irregularities, allowing 
the tree volume to be determined very accurately (Fig. 
5B, D). According to Dassot et al. (2012), the resulting 
model can serve as an absolute reference for volume me-
asurements. However, the application of the direct sur-
face reconstruction method requires a very high quality 
and high density point cloud, as it is very sensitive to 
the lack of data continuity. Due to the complexity of the 
forest environment and the fact that trunks and branches 
obscure each other, this method can only be used for MS 
mode data. However, it should be noted that even with 
data collected in this way, certain tree fragments will not 
be faithfully reproduced, which may result in a model 
being developed with some shortcomings or deficiencies. 
An additional disadvantage of this method is the need to 
pre-select points representing the woody parts of trees.

The second approach, most commonly used, is to fit sim-
ple geometric primitives into point cloud segments that re-

present the woody parts of trees. The process of creating a 
three-dimensional model using this method is usually done 
in stages, from the base of the trunk to the top of the tree. 
Simple three-dimensional geometric figures, such as a cy-
linder, circle, ellipse, or sphere (Raumonen et al. 2013; Hac-
kenberg et al. 2015), are iteratively fitted into the point cloud 
segments, representing small fragments of a trunk or branch. 
The end result of the modelling is a set of shapes that can be 
combined into a whole. In these methods, the first stage of 
processing often involves building the skeleton of a tree (Du 
et al. 2019), which allows the model to be decomposed into 
components, i.e. individual branches. Compared to the pre-
vious one, this method produces a generalised image of the 
tree (Fig. 5C, E). However, it is less sensitive to data gaps. 
When using this method, the best results are obtained with 
data from the MS mode. It is also possible to build models of 
the main trunk based on  SS data, as the algorithms for mer-
ging simple geometric figures are able to deal with partially 
incomplete data and interpolate the missing part of stem.

Figure 5. Comparison of quantitative structure models: A – TLS point cloud representing European beech in RGB colors; B, D – tree model 
obtained by meshing method; C, E –  tree model  obtained by cylinder fitting method, visualization was made in CloudCompare software 
(Girardeau-Montaut 2020)
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5.3. TLS data processing software

To date, there is no commercial software for working 
with TLS data that covers all aspects of data processing for 
forestry purposes. Two companies are developing such so-
ftware -Treemetrics (Ireland) is developing the AutoStem 
software (Bienert et al. 2007), while Taxus IT (Poland) is 
developing thetScan software (Konieczny, Neroj 2016). Ho-
wever, in both cases, they have not yet been included in the 
sales offer of their companies.

Nevertheless, there are several free solutions (Table 2) 
that enable such processing of TLS data, developed mainly 
by scientific centres. 

These include standalone desktop applications and libra-
ries of specialised tools used through programming deve-
lopment environments such as Matlab, R, or Python. These 
tools are publicly available and free of charge.

6. Assessment of the basic tree parameter
estimates obtained by using TLS technology

In this section, the results of the paper are presented, 
summarising the achieved accuracy of the estimation of 
selected basic tree parameters. It should be noted that 
the obtained results depend on a number of factors such 
as: Stand structure, assumed sample size, type of scan-
ner used and data processing method applied. The works 
cited focus on the results obtained for tree stands in the 
temperate climate zone.

6.1. Detection of trees in the sample plots

In 2018, an international academic consortium conduc-
ted a comparison of 18 algorithms for processing TLS data 
from sample plots (Liang et al. 2018b). In the study, referen-
ce dendrometric and TLS data were obtained for 24 square 
plots with side length of 32 m. The selected plots represen-
ted three categories depending on the complexity of stand 
structure: simple – stands with good stem visibility, lack of 
understory, and tree density of about 600 pcs/ha; medium – 
stands with moderately complex structure, where there are 
single clumps of understory and tree density is about 1,000 
pcs/ha; and difficult – where there is abundant understory 
or a second stand layer and tree density is about 2,000 pcs/
ha. The authors of this paper compared the algorithms for 
many biometric features of trees and for two types of data 
collection – SS and MS. 

Three indicators were proposed to evaluate the tree detec-
tion algorithms: detection completeness – it indicates what 

part of trees in the sample plot was detected, detection cor-
rectness – it indicates what part of detected trees was correc-
tly classified as a tree (the algorithm can classify an object 
that is not a tree), and average detection accuracy – it is a 
resultant measure of the previous two measures. 

The reference data and TLS from this project have been 
published, making it possible to compare newly developed 
tree detection algorithms (Zhang et al. 2019, Wang et al. 
2020). However, it should be noted that an incomplete da-
taset was provided, i.e. 6 sample plots, two for each of the 
stand structure complexity categories.

Below are the tree detection results obtained in the pro-
ject (Liang et al. 2018b) and other works (Zhang et al. 2019; 
Wang et al. 2020) using the SS (Table 3) and MS (Table 4) 
modes.

The above results indicate that the accuracy of tree detec-
tion differs depending on the mode of TLS data acquisition 
used for the analysis (SS or MS), the complexity of the stand 
structure and its vertical structure.

6.2. Diameter at breast height measurement

DBH is the most frequently measured and used bio-
metric parameter of trees in forestry. Table 5 presents the 
selected results of DBH measurements obtained using 
two modes of TLS data acquisition. Two error measures 
are presented in this table: bias, which indicates whether 
the measurement is over- or underestimated on average, 
and root mean square error (RMSE), which indicates the 
average error.

Based on the results of previous work, one can see that 
the use of the MS mode does not significantly improve 
the estimation of DBH. On the basis of the above results, 
it can be assumed that the average error of determining 
DBH in the SS mode is 1–3 cm, while in the MS mode – 
under 2 cm.

It is worth noting that according to research conducted in 
Finland in the 1990s, the accuracy of measuring DBH with 
a tree calliper was about 0.7 cm (Hyyppä et al. 2018). In the 
above experiment, an independent measurement of DBH for 
a fixed group of trees was performed many times by many 
surveyors, thus eliminating a potential systematic error.

6.3. Tree height measurement

The TLS tree height measurement has a systematic error 
because the upper parts of the tree crown are not well visi-
ble. The tops of the trees are obscured by the branches at 
the bottom of the crown, resulting in a measurement that 
is usually lower than the actual height. Errors reaching se-
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veral metres have been reported in published works (Table 
6). Using the MS mode improves the results, but there still 
remains some error in the height estimates.

6.4. Tree taper curve measurement 

TLS data allow to reproduce the taper curve of a stem in 
a non-invasive manner by taking automatic diameter measu-
rements of point cloud sections from different stem heights. 
When TLS is implemented in operational forestry, it is pos-
sible to reconstruct the taper curve for each of the trees in 
the sample plot.

It should be noted that it is often not possible to recon-
struct the entire trunk from the base of the trunk to the top 
of the tree. This is due to the lack of visibility of the hi-
ghest parts of the stem, or because its representation in the 
point cloud is too weak, resulting from the long distance of 
the scanner to the top of the tree (the distance can be more 
than 30 m for tall trees), which means less frequent point 
sampling. 

It is assumed that, on average,the stems of up to 50–70% 
of the relative tree height can be reconstructed using TLS in 
the sample plots (Liang et al. 2018b). Note that this is the part 
of the stem where most of the tree volume is accumulated. 

Table 2. Free software to TLS data processing for forestry purposes

Name Reference Platform

Algorithms used

DTM 
extraction

Tree stem 
detection

Point cloud classifi-
cation into wood/leaf 

components

Basic tree 
parameters 
extraction

QSM 
extrac-

tion

DendroCloud
Koreň et al. 

2017
standalone 
application

+ + - + -

3DForest
Trochta et 
al. 2017

standalone 
application

+ + - + +

Computree*
Othmani et 

al. 2013
standalone 
application

+ + - + +

Simple- 
Forest**

Hacken-
berg et al. 

2015

standalone 
applica-
tion***

+ + - + +

AdTree
Du et al. 

2019
standalone 
application

- - - + +

SSSC
Wang et al. 

2020

standalone 
application 
and Matlab

+ + + - -

TreeQSM
Raumonen 
et al. 2013

Matlab - - - + +

TreeLS
de Conto et 

al. 2017
R - + - + -

TLSeparation
Vicari et al. 

2019
Python - - + - -

*a multifunctional platform designed for processing LiDAR data for forestry purposes, with the possibility of adding external plugins;
**the software has changed its name from SimpleTree; 
***the Computree platform plug-in
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Maas et al. (2008) compared the taper curves of the stem 
obtained with TLS technology and with a harvester head. An 
RMSE of 4.7 cm was obtained with respect to the reference 
measurements from the harvester. The authors note that the 
error between stem sections between 0.7 and 7.7 m was only 
1 cm. They also point out that the error on the whole trunk 
is larger due to the unusual (non-cylindrical) shape of the 
lower part of the trunk and the large number of branches in 
its upper part. The specific structure of the studied tree nega-
tively influenced the diameter estimation.

Table 7 shows a summary of the results obtained for the 
determination of the longitudinal taper curve of the trunk. 
It contains information about the average longitudinal taper 
curve in the sample plots. This value expresses the percenta-
ge of relative tree height that could be mapped.

6.5. Determining tree volume

Using TLS data, it is possible to directly determine the 
volume of individual trees with an error not exceeding 

10%, which is comparable to the results obtained using 
the best allometric equations (Dassot et al. 2012; Liang 
et al. 2014).

In an international comparison of TLS algorithms 
(Liang et al. 2018b), the best algorithm for data collection 
in the SS mode achieved an RMSE for single-tree volumes 
between 25 and 50%, and between 20 and 40% for the MS 
mode. In this study, a measure for the overall assessment 
of the tree volume of the sample plot was proposed by cal-
culating the volume ratio. This is calculated as the quotient 
of the tree volume determined by TLS and the reference 
volume. The authors give the average volume ratio for cir-
cular plots with three different structures: easy – 94% for 
the mode SS and 107% for the mode MS, medium – 87% 
for the mode SS and 107% for the mode MS and difficult 
– 43% for the mode SS and 94% for the mode MS. These
results show that it is possible to determine the volume at 
the sample plot level in both SS and MS modes with an 
error of 6 – 13% for stands with simple and medium struc-
tures. When using the SS mode in plots with difficult struc-

Table 3. Results of automatic tree detection on the 32×32 m sample plots at different levels of stand complexity – single-scan mode

Stand complexity Parameter [%]
Results

Liang et al. 2018b Zhang et al. 2019

Easy

mean accuracy ~88* 79

completeness ~81* 68

correctness ~92* 95

Medium

mean accuracy ~73* 57

completeness ~70* 41

correctness ~92* 100

Difficult

mean accuracy ~48* 20

completeness ~34* 11

correctness ~95* 95

Mean

mean accuracy 57** 52

completeness 62** 40

correctness 93** 97

*result achieved by the best algorithm,
**mean value calculated from results based on all 18 algorithms
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ture, the total volume is underestimated by more than 50%. 
Mode MS, on the other hand, gives very similar results to 
the reference data (6% difference). 

Table 8 shows the results of estimating the volume of the 
individual trees.

7. Discussion

The presented results show the great potential of using
TLS technology in forest inventory. However, the introduc-
tion of this technology in forest practice is a complicated 
and time-consuming process. The change from existing so-
lutions to new technologies must bring measurable econo-
mic or qualitative benefits.

In terms of forest inventory, the most important factors 
influencing the adoption of a new measurement techno-
logy are: the accuracy of the determination of basic tree 
characteristics, the cost of the technology (both equipment 
and software) and aspects relating to the operational use 

of the technology (technological limitations, time of data 
acquisition, dimensions of the equipment and the required 
qualifications of surveyors, including training in the use of 
the scanner and software). Considering these aspects, the 
main limitations of using TLS in forestry practice are the 
cost of the technology, lack of software and aspects relating 
to its operational use.

Although the price of TLS devices is gradually decre-
asing, the cost of 100,000–150,000 PLN per device is still 
too high. Given the current lack of multifunctional commer-
cial TLS data processing software for forestry purposes, it 
can be assumed that the first ones to appear on the market 
will also be expensive. This aspect may be the main reason 
for not implementing this technology in forestry practice in 
the next few years.

Taking into account aspects of the operational use of 
TLS technology in forestry, the most difficult one is to en-
sure the detection of all trees in the sample plots. With the 
current methodology of taking measurements in circular 
plots, the MS data acquisition mode can be used in stands 

Table 4. Results of automatic tree detection on the 32×32 m sample plots at different levels of stand complexity – multi-scan mode

Stand complexity Parameter [%]
Results

Liang et al. 2018b* Zhang et al. 2019 Wang et al. 2020

Easy

mean accuracy ~92* 90 90

completeness ~90* 84 91

correctness ~94* 97 88

Medium

mean accuracy ~88* 74 74

completeness ~88* 59 78

correctness ~89* 99 71

Difficult

mean accuracy ~70* 51 63

completeness ~66* 36 58

correctness ~93* 96 69

Mean

mean accuracy 69** 72 76

completeness 81** 60 76

correctness 92** 97 76

*result achieved by the best algorithm,
**mean value calculated from results based on all 18 algorithms
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Table 5. Results of the automatic estimation of the diameter at the breast height based on the TLS point cloud in two data acquisition modes 
– SS (single-scan) and MS (multi-scan)

Reference TLS mode Tree species
Results

bias [cm] root mean square error RMSE [cm]

Pueschel et al. 
2013

SS Fagus sylvatica L., Pseudot-
suga menziesii (Mirb.) Franco

-0.7 1.39– 2.43

MS -0.55 0.66–1.21

Olofsson et al. 
2014

SS
Picea abies  (L.) H. Karst, Pi-
nus sylvestris L., Betula spp L.

-3.1 2.3–7.4

Wang et al. 
2017

SS
Picea abies, Pinus sylvestris

0.4 1.6

MS 0.3 1.7

Koreň et al. 
2017

SS
Fagus sylvatica

0.75 2.38

MS -0.37 0.77

Liang et al. 
2018b

SS Pinus sylvestris, Picea abies, 
Betula pubescens Ehrh.

~ 0.0 1.0– 3.0

MS ~ 0.0 < 2.0

Pitkänen et al. 
2019

MS
Picea abies, Pinus sylvestris, 

Betula spp.
0.04 0.7

Table 6. Results of the automatic estimation of the tree height based on the TLS point cloud in two data acquisition modes – SS (single-scan) 
and MS (multi-scan)

Reference TLS mode Tree species
Results

bias [m] root mean square error RMSE [m]

Wężyk et al. 
2007

MS
Pinus sylvestris, Quercus spp. 

L., Fagus sylvatica
0.35–0.44 0.79–1.1

Maas et al. 
2008

SS/MS
Picea abies, Abies alba Mill., 

Fagus sylvatica, Larix decidua 
Mill., Pseudotsuga menziesii

0.6 4.6

Olofsson et al. 
2014

SS
Picea abies, Pinus sylvestris, 

Betula spp.
-0.1 4.9

Saarinen et al. 
2017

SS/MS
Pinus sylvestris, Picea abies, 

Betula spp.
-2.8– -1.4 1.9–3.6

Liang et al. 
2018b

SS Pinus sylvestris, Picea abies, 
Betula pubescens

-2.2 2.4–7.8

MS < -2.2 2.8–4.7

Wang et al. 
2019

MS
Pinus sylvestris, Picea abies, 

Betula spp.
-1.21 1.68–2.11
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with a simple structure. The results show that with this 
configuration, all or the vast majority of trees in the sam-
ple plots are able to be automatically detected. However, 
scanning from several positions significantly lengthens the 
surveyor’s working time, which is currently considered 
to be too long. It is possible that the new generation of 
scanners will require less time to obtain data, but the cost 
of such devices will certainly be relatively high at first. 
Additionally, artificial markers usually have to be set up 
to align the scans when using the MS mode. The possible 
development and general availability of algorithms to au-
tomatically align scans without the use of targets will cer-
tainly be a factor influencing the potential implementation 
of TLS in forestry practice. So far, there have been several 
papers on this issue, and such algorithms are available only 
in a few commercial software programs.

The use of data obtained in the SS mode is competiti-
ve compared to the MS mode, but only for trees that are 
clearly visible in the point cloud. Based on the results of 
published works, it can be assumed that about 70% of the 
trees in a circular plot are detected using the SS mode. If 
an inventory method based only on visible trees or a cor-
rection method for invisible trees was developed, the SS 
mode would be attractive for forestry practice due to the 
much shorter time of data acquisition. So far, little work 
is available on this topic, and further research is required. 

Should such methods be developed, it would be possible to 
use TLS in more complex stands. Worth noting recurrent 
research results, showing that the determination of some 
aggregate stand characteristics, e.g. abundance, using both 
data acquisition modes provides results very similar to the 
reference data for stands with simple and moderate struc-
tures, and using the MS mode – even for stands with a 
complex structure.

Another potential scenario is the use of TLS SS data to 
calibrate the methods of estimating survey characteristics 
using ALS and individual tree detection (ITD) methods. 
This approach would use only information from clearly vi-
sible trees. This topic also requires study and the develop-
ment of precise methods to align TLS and ALS data with 
“tree-to-tree” accuracy. Of course, this solution is also very 
expensive at the moment.

The problem of obscured trees can be solved with mobi-
le laser scanning (MLS). By using this constantly evolving 
technology, it is possible to design the trajectory of the 
survey of the sample area in such a way that all trees can 
be mapped. The use of terrestrial remote sensing techniques 
such as MS TLS or MLS also makes it possible to increase 
the size of the sample plots to be considered, which can be 
an additional advantage in forest inventory. 

It is worth mentioning the release of the new version of 
Apple's flagship product. In March 2020, the company began 

Table 7. Results of the automatic estimation of the tree taper curve based on the TLS point cloud in two data acquisition modes – SS (single-
scan) and MS (multi-scan).

Reference TLS mode Tree species

Results

percentage of the tree 
height covered by 

measurements [%]*
bias [cm]

root mean square 
error RMSE [cm]

Maas et al. 
2008

SS
Picea sitchensis (Bong.) 

Carrière
- - 4.7

Liang et al. 
2014

MS
Pinus sylvestris, Picea 

abies
61–66 0.15 1.13

Saarinen et al. 
2017

SS Pinus sylvestris, Picea 
abies, Betula spp

38–45
- -

MS 58–62

Liang et al. 
2018b

SS Pinus sylvestris, Picea 
abies, Betula pubescens

34–60 -0.1–0.2 1.3–6.0

MS 56–65 0.2 0.9–5.0

*mean value
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Table 8. Results of the automatic estimation of the tree volume based on the TLS point cloud in two data acquisition modes – SS (single-
scan) and MS (multi-scan)

Reference TLS mode Tree species

Results

bias [%]
root mean square error RMSE 

[%]

Dassot et al. 
2012

MS

Quercus spp., Robinia pseudoaccia L., 
Alnus glutinosa, Fraxinus excelsior L., 

Tilia coordata Mill., Betula pendula 
Roth., Pinus halepensis Mill.

+/-10* -

Pueschel et al. 
2013

SS
Fagus sylvatica, Pseudotsuga menziesii

-34–44* -

MS -2–6* -

Kankare et al. 
2013

MS Pinus sylvestris, Picea abies 0.67 15.34

Liang et al. 
2014

MS Pinus sylvestris, Picea abies ~ -2** 9.5

Saarinen et al. 
2017

SS
Pinus sylvestris, Picea abies, Betula spp

-0.8 12.4

MS 4.3 8.5

Liang et al. 
2018b

SS Pinus sylvestris, Picea abies, Betula 
pubescens

- ~ 20–45***

MS - ~ 15–25***

*deviation from the reference value,
**calculated from publication data, 
***the best result among 18 tested algorithms in stands with different structure

selling a new version of the iPad Pro. One of its innovations 
is a built-in LiDAR sensor. According to the manufacturer, 
the range of the sensor is up to 5 metres and allows you 
to reconstruct the nearest environment in three dimensions 
(Apple Inc. 2020). The price of the basic version of this iPad 
is currently about 3,900. So far, there are no published works 
on the use of this tablet in forestry research, but it is expec-
ted that soon such studies will be conducted and may be of 
interest for forestry practise.

Given the continued development of LiDAR technolo-
gy, one can expect to see the development of laser scanners 
capable of large-scale aerial mapping of tree trunks in the 
next decade or so. Assuming that the technology develops 
in this direction, it will then be possible to directly measure 
the basic characteristics of individual trees without the need 
for ground measurements and statistical modelling. It can be 
assumed that the algorithms developed for TLS data proces-
sing could be directly applied to this new type of data.

8. Conclusions

1. Over the last 20 years, TLS data processing algo-
rithms for forest inventory purposes have significantly 
developed.

2. TLS technology can be used for non-invasive dendro-
metric measurements of trees and stands, with an estimation 
accuracy of most parameters comparable to traditional me-
asurement methods currently used in forestry.

3. The best time to obtain TLS data for forest inventory
purposes is early spring or late autumn (especially in deci-
duous stands or with the participation of deciduous species 
in the undergrowth). Scanning is best done in windless we-
ather and low air humidity.

4. Better results for estimating the biometric characteri-
stics of trees can be obtained using the MS data acquisition 
mode. However, measurements using this mode are much 
more time-consuming compared to the SS mode. 
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5. The TLS data acquisition mode and stand structure
have a great influence on the detection of trees and the accu-
racy of describing their biometric characteristics.

6. Using TLS technology makes it possible to non-inva-
sively measure the taper curve of standing trees up to about 
60–70% of relative tree height.

7. The measurement of tree height is burdened with a re-
latively large systematic error caused by the ‘occlusion ef-
fect’ – the top of the tree is obscured by the lower part of the 
crown. 

8. Further research is needed on the use of TLS techno-
logy in forest inventory and the creation of a set of ‘good 
practices’ and instructions on how to obtain and process 
TLS data, taking into account different variants of their 
acquisition.

Conflict of interest

The authors declare the lack of potential conflicts of 
interest.

Funding sources

This publication was written within the framework of 
the REMBIOFOR project ‘Remote sensing based assess-
ment of woody biomass and carbon storage in forests’ 
co-financed by the National Centre for Research and De-
velopment under the program ‘Natural environment, agri-
culture and forestry’ BIOSTRATEG under agreement no. 
BIOSTRATEG1/267755/4/NCBR/2015.

References

Apple Inc. 2020.  Apple unveils new iPad Pro with breakthrough 
LiDAR Scanner and brings trackpad support to iPadOS, Apple 
Inc. https://www.apple.com/pl/newsroom/2020/03/apple-u-
nveils-new-ipad-pro-with-lidar-scanner-and-trackpad-suppor-
t-in-ipados/ [20.09.2020].

Aschoff T., Spiecker H. 2004. Algorithms for the automatic de-
tection of trees in laser scanner data. International Archives 
of Photogrammetry, Remote Sensing and Spatial Information 
Sciences 36(8) / W2: 71–75.

Astrup R., Ducey M., Granhus A., Ritter T., von Lüpke N. 2014. 
Approaches for estimating stand-level volume using terre-
strial laser scanning in a  single-scan mode. Canadian Jo-
urnal for Forest Research 44(6): 666–676. DOI 10.1139/
cjfr-2013-0535.

Będkowski K. 2004. Skanowanie laserowe i  jego zastosowanie 
w leśnictwie. Roczniki Geomatyki 4: 33–40.

Będkowski K., Adamczyk J., Kamińska B., Karaszkiewicz W., 
Korpetta D., Mozgawa J., Olenderek H., Stereńczak K., Tracz 

W., Zarzecka M. 2011. Las w rastrowym modelu danych prze-
strzennych. Wydawnictwo SGGW, Warszawa,  213 s. ISBN 
978-83-7583-335-5.

Bienert A., Scheller S., Keane E., Mohan F., Nugent C. 2007. 
Tree detection and diameter estimations by analysis of fo-
rest terrestrial laserscanner point clouds,  in:  Proceedings 
of the ISPRS Workshop 'Laser Scanning 2007 and SilviLa-
ser 2007' (ed. P. Rönnholm, H. Hyyppä, J. Hyyppä), 12–
14.09.2007, Espoo, Finland. 12–14.09.2007. IAPRS  36(3) 
/ W52, 50–55. 

Brolly G., Kiraly G. 2009. Algorithms for stem mapping by means 
of terrestrial laser scanning. Acta Silvatica et Lignaria Hunga-
rica 5: 119–130.

Burt A, Disney M, Calders K. 2018. Extracting individual trees 
from lidar point clouds using treeseg. Methods in Ecology and  
Evolution 10(3): 438–445. DOI 10.1111/2041-210X.13121.

de Conto T., Olofsson K., Görgens E.B., Rodriguez L.C.E., Al-
meida G. 2017. Performance of stem denoising and stem mo-
delling algorithms on single tree point clouds from terrestrial 
laser scanning. Computers and Electronics in Agriculture 143: 
165–176. DOI 10.1016/j.compag.2017.10.019.

Chirrek M., Wencel A., Strzeliński P., Zasada M., Zawiła-Niedź-
wiecki T. 2007. Wykorzystanie technologii naziemnego ska-
ningu laserowego w inwentaryzacji lasu. Roczniki Geomatyki 
5(5): 19–24.

Chmielewski L., Bator M., Zasada M., Stereńczak K., Strzeliński 
P. 2010. Fuzzy Hough transform-based methods for extraction 
and measurements of single trees in large-volume 3D terrestrial 
LIDAR data, in: L. Bolc, R. Tadeusiewicz, L.J. Chmielewski, 
K. Wojciechowski (red.) Computer Vision and Graphics, 265–
274. DOI 10.1007/978-3-642-15910-7_30.

Côté J.F., Widlowski J.L., Fournier R.A., Verstraete M.M. 2009. 
The structural and radiative consistency of three-dimensio-
nal tree reconstructions from terrestrial lidar. Remote Sen-
sing of Environment 113(5): 1067–1081. DOI 10.1016/j.
rse.2009.01.017.

Danson F.M., Gaulton R., Armitage R.P., Disney M., Guna-
wan O., Lewis P., Pearson G., Ramirez A.F. 2014. Deve-
loping a  dual-wavelength full-waveform terrestrial laser 
scanner to characterize forest canopy structure. Agricul-
tural and Forest Meteorology 198: 7–14.  DOI 10.1016/j.
agrformet.2014.07.007.

Dassot M., Constant T., Fournier M., 2011. The use of terrestrial 
LiDAR technology in forest science: application fields, bene-
fits and challenges. Annals of Forest Science 68: 959–974. DOI 
10.1007/s13595-011-0102-2.

Dassot M., Colin A., Santenoise P., Fournier M., Constant T. 2012. 
Terrestrial laserscanning for measuring the solid wood volume, 
including branches, of adult standingtrees in the forest environ-
ment. Computers and Electronics in Agriculture 89: 86–93. 
DOI 10.1016/j.compag.2012.08.005.

Girardeau-Montaut D. 2020. CloudCompare – 3D Point Cloud and 
Mesh Processing Software (Version 2.11.3). GPL Softw. 2020.  
http://www.cloudcompare.org/ [14.10.2020].

https://www.apple.com/pl/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://www.apple.com/pl/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://www.apple.com/pl/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/
https://doi.org/10.1139/cjfr-2013-0535
https://doi.org/10.1139/cjfr-2013-0535
https://doi.org/10.1016/j.compag.2017.10.019
https://www.sciencedirect.com/science/journal/00344257
https://www.sciencedirect.com/science/journal/00344257
https://doi.org/10.1016/j.rse.2009.01.017
https://doi.org/10.1016/j.rse.2009.01.017
file:///C:\Users\IBL\AppData\Local\Temp\DOI%2010.1016\j.agrformet.2014.07.007
file:///C:\Users\IBL\AppData\Local\Temp\DOI%2010.1016\j.agrformet.2014.07.007
http://www.cloudcompare.org/


192 G. Krok et al. / Leśne Prace Badawcze, 2020, Vol. 81 (4): 175–194

Hackenberg J., Spiecker H., Calders K., Disney M., Raumonen 
P. 2015. SimpleTree – An efficient open source tool to build 
tree models from TLS clouds. Forests 6(11): 4245–4294. DOI 
10.3390/f6114245.

Hawryło P. 2017. Określanie wybranych cech drzewostanów 
sosnowych z  wykorzystaniem chmur punktów pozyska-
nych w  procesie automatycznego dopasowania cyfrowych 
zdjęć lotniczych. Sylwan 161(9): 707–714. DOI 10.26202/
sylwan.2017066.

Henning J., Radtke P., 2006. Detailed Stem Measurements of Stan-
ding Trees from Ground-Based Scanning Lidar. Forest Science 
52(1): 67–80. DOI 10.1093/forestscience/52.1.67.

Hyyppä J., Virtanen J.-P., Jaakkola A., Yu X., Hyyppä H., Liang 
X. 2018. Feasibility of Google Tango and Kinect for Crowdso-
urcing Forestry Information. Forests 9(1): 6.  DOI 10.3390/
f9010006.

Kangas A., Astrup R., Breidenbach J., Fridman J., Gobakken 
T., Korhonen K., Maltamo M., Nilsson M, Nord-Larsen 
T., Næsset E., Olsson H. 2018. Remote sensing and forest 
inventories in Nordic countries – roadmap for the future. Scan-
dinavian Journal of Forest Research 33(4): 397–412.  DOI 
10.1080/02827581.2017.1416666.

Kankare V., Holopainen M., Vastaranta M., Puttonen E., Yu X., 
Hyyppä J., Vaaja M., Hyyppä H., Alho P. 2013. Individual tree 
biomass estimation using terrestrial laser scanning. ISPRS Jo-
urnal of Photogrammetry and Remote Sensing 75: 64–75. DOI 
10.1016/j.isprsjprs.2012.10.003.

Konieczny A., Neroj B. 2016. Projekt działania programu do obli-
czania miąższości drzew na podstawie danych skanowania na-
ziemnego (TLS), prezentacja z „Narada Koordynatorów SIP”, 
Zakopane, 23–25.02.2016 r. https://www.geomatyka.lasy.gov.
pl/documents/25999395/0/Konieczny-TLS.pdf/b13219cc-
1608-4004-8692-2de4d0d44a5e [12.11.2020].

Koreň M., Mokroš M., Bucha T. 2017. Accuracy of tree dia-
meter estimation from terrestrial laser scanning by circ-
le-fitting methods. International Journal of Applied Earth 
Observation and Geoinformation 63: 122–218. DOI 
10.1016/j.jag.2017.07.015.

Li Z., Douglas E., Strahler A., Schaaf C., Yang X., Wang Z., Yao 
T., Zhao F., Saenz E.J., Paynter I. 2013. Separating leaves from 
trunks and branches with dual-wavelength terrestrial LiDAR 
scanning, in: Proceedings of the 2013 IEEE International Ge-
oscience and Remote Sensing Symposium (IGARSS), Mel-
bourne, VIC, Australia, 21–26 July 2013, 3383–3386. DOI 
10.1109/IGARSS.2013.6723554.

Liang X., Litkey P., Hyyppä J., Kaartinen H., Vastaranta M., 
Holopainen M. 2012. Automatic stem mapping using sin-
gle-scan terrestrial laser scanning. IEEE Transactions on 
Geoscience and Remote Sensing 50: 661–670. DOI 10.1109/
TGRS.2011.2161613. 

Liang X., Kankare V., Yu X., Hyyppä J., Holopainen M. 2014. Au-
tomated stem curve measurement using terrestrial laser scan-
ning. IEEE Transactions on Geoscience and Remote Sensing,  
52(3): 1739–1748. DOI 10.1109/TGRS.2013.2253783.

Liang X., Kankare V., Hyyppä J., Wang Y., Kukko A., Haggrén 
H., Yu X., Kaartinen H., Jaakkola A., Guan F., Holopainen M., 
Vastaranta M. 2016. Terrestrial laser scanning in forest inven-
tories. ISPRS Journal of Photogrammetry and Remote Sensing 
115: 63–77. DOI 10.1016/j.isprsjprs.2016.01.006.

Liang X., Kukko A., Hyyppä J., Lehtomäki M., Pyörälä J., Yu 
X., Kaartinen H., Jaakkola A., Wang Y. 2018a. In-situ me-
asurements from mobile platforms: An emerging approach to 
address the old challenges associated with forest inventories. 
ISPRS Journal of Photogrammetry and Remote Sensing 143: 
97–107. DOI 10.1016/j.isprsjprs.2018.04.019.

Liang X., Hyyppä J., Kaartinen H., Lehtomäki M., Pyörälä J., 
Pfeifer N., Holopainen M., Brolly G., Francesco P., Hacken-
berg J., Huang H., Jo H-W., Katoh M., Liu L., Mokroš M., 
Morel J., Olofsson K., Poveda-Lopez J., Trochta J., Wang D., 
Wang J., Xi Z., Yang B., Zheng G., Kankare V., Luoma V., 
Yu X., Chen L., Vastaranta M., Saarinen N., Wang Y. 2018b. 
International benchmarking of terrestrial laser scanning ap-
proaches for forest inventories. ISPRS Journal of Photogram-
metry and Remote Sensing 144: 137–179.  DOI 10.1016/j.
isprsjprs.2018.06.021.

Lindberg E., Holmgren J., Olofsson K., Olsson H. 2012. Estima-
tion of stem attributes using a  combination of terrestrial and 
airborne laser scanning. European Journal of Forest Research 
131: 1917–1931. DOI 10.1007/s10342-012-0642-5.

Maas H., Bienert A., Scheller S., Keane E. 2008. Automatic fo-
rest inventory parameter determination from terrestrial laser 
scanner data. International Journal of Remote Sensing 29(5): 
1579–1593.  DOI 10.1080/01431160701736406. 

Næsset, E. 2002. Predicting forest stand characteristics with air-
borne scanning laser using a practical two-stage procedure and 
field data. Remote Sensing of Environment 80: 88–99. DOI 
10.1016/S0034-4257(01)00290-5.

Olofsson K., Holmgren J., Olsson H. 2014. Tree stem and height 
measurements using terrestrial laser scanning and the RAN-
SAC algorithm. Remote Sensing 6: 4323–4344. DOI 10.3390/
rs6054323.

Olofsson K., Holmgren J. 2016. Single Tree stem profile detec-
tion using terrestrial laser scanner data, flatness saliency fe-
atures and curvature properties. Forests 7: 207. DOI 10.3390/
f7090207.

Pitkänen T.P., Raumonen P., Kangas A. 2019. Measuring stem dia-
meters with TLS in boreal forests by complementary fitting 
procedure. ISPRS Journal of Photogrammetry and Remote 
Sensing 147: 294–306. DOI 10.1016/j.isprsjprs.2018.11.027.

Pueschel P., Newnham G., Rock G., Udelhoven T., Werner W., 
Hill J. 2013. The influence of scan mode and circle fitting 
on tree stem detection, stem diameter and volume extrac-
tion from terrestrial laser scans. ISPRS Journal of Photo-
grammetry and Remote Sensing 77: 44–56. DOI 10.1016/j.
isprsjprs.2012.12.001.

Raumonen P., Kaasalainen M., Åkerblom M., Kaasalainen S., Ka-
artinen H., Vastaranta M., Holopainen M., Disney M., Lewis 
P. 2013. Fast automatic precision tree models from terrestrial 

https://doi.org/10.3390/f9010006
https://doi.org/10.3390/f9010006
https://doi.org/10.1080/02827581.2017.1416666
https://doi.org/10.1080/02827581.2017.1416666
https://doi.org/10.1016/j.isprsjprs.2012.10.003
https://doi.org/10.1016/j.isprsjprs.2012.10.003
https://doi.org/10.1016/j.isprsjprs.2012.10.003
https://doi.org/10.1016/j.jag.2017.07.015
https://doi.org/10.1016/j.jag.2017.07.015
https://doi.org/10.1016/j.isprsjprs.2018.04.019
file:///G:\01_IBL\PRZEGLAD_tls_sYLWAN\TLS_przeglad_Lesne_prace_badawcze\v2_po_poprawkach_z_recenzji\,%20https:\doi.org\10.1016\j.isprsjprs.2018.06.021
file:///G:\01_IBL\PRZEGLAD_tls_sYLWAN\TLS_przeglad_Lesne_prace_badawcze\v2_po_poprawkach_z_recenzji\,%20https:\doi.org\10.1016\j.isprsjprs.2018.06.021
https://doi.org/10.1080/01431160701736406%20
file:///F:/lesne_prace_badawcze/2020/4/krok/%20https://doi.org/10.1016/S0034-4257(01)00290-5
file:///F:/lesne_prace_badawcze/2020/4/krok/%20https://doi.org/10.1016/S0034-4257(01)00290-5
https://doi.org/10.1016/j.isprsjprs.2012.12.001
https://doi.org/10.1016/j.isprsjprs.2012.12.001


193G. Krok et al. / Leśne Prace Badawcze, 2020, Vol. 81 (4): 175–194

laser scanner data. Remote Sensing 5: 491–520. DOI 10.3390/
rs5020491.

Ratajczak M., Wężyk P. 2015. Automatyczne określanie średni-
cy pnia, podstawy korony oraz wysokości sosny zwyczajnej 
(Pinus silvestris L.) na podstawie analiz chmur punktów 3D 
pochodzących z wielostanowiskowego naziemnego skanowa-
nia laserowego. Archiwum Fotogrametrii, Kartografii i Telede-
tekcji 27: 123–138. DOI 10.14681/afkit.2015.009.

Riegl 2020. Riegl VZ-400i. Riegl Laser Measurement Sys-
tem GmbH, Austria. http://www.riegl.com/uploads/tx_px-
priegldownloads/RIEGL_VZ-400i_Datasheet_2020-10-06 
[20.10.2020]. 

Seidel D., Fleck S., Leuschner C. 2012. Analyzing forest canopies 
with ground-based laser scanning: A  comparison with hemi-
spherical photography. Agricultural and Forest Meteorology 
154–155: 1–8. DOI 10.1016/j.agrformet.2011.10.006.

Stereńczak K. 2010. Technologia lotniczego skanowania lasero-
wego jako źródło danych w półautomatycznej inwentaryzacji 
lasu. Sylwan 154(2): 88−99.  DOI 10.26202/sylwan.2009041.

Stereńczak K., Lisańczuk M., Parkitna K., Mitelsztedt K., Mro-
czek P., Miścicki S. 2018. The influence of number and size of 
sample plots on modelling growing stock volume based on air-
borne laser scanning. Drewno 61(201): 5–22. DOI 10.12841/
wood.1644-3985.D11.04.

Tanaka T., Yamaguchi J., Takeda Y. 1998. Measurement of forest 
canopy structure with a laser plane range-finding method – De-
velopment of a measurement system and applications to real 
forests. Agricultural and Forest Meteorology 91: 149–160.

Tompalski P. 2009. Naziemny skaning laserowy w inwentaryzacji 
zieleni miejskiej na przykładzie Plant w Krakowie. Archiwum 
Fotogrametrii, Kartografii i Teledetekcji 20: 421–431. 

Trochta J., Krůček M., Vrška T., Král K. 2017. 3D Forest: An ap-
plication for descriptions of three-dimensional forest structures 
using terrestrial LiDAR. Plos One 12: e0176871. DOI 10.1371/
journal.pone.0176871.

Vaaja M.T., Virtanen J.P., Kurkela M., Lehtola V., Hyyppä J., Hyyp-
pä H. 2016. The effect of wind on tree stem parameter estimation 
using terrestrial laser scanning. ISPRS Annals of the Photo-
grammetry, Remote Sensing and Spatial Information Sciences 
III-8: 117–122. DOI 10.5194/isprs-annals-III-8-117-2016.

Vicari M.B., Disney M., Wilkes P., Burt A., Calders K., Woodgate 
W. 2019. Leaf and wood classification framework for terre-
strial LiDAR point clouds. Methods in Ecology and Evolution 
10(5): 1–15. DOI 10.1111/2041- 210X.13144.

Wang D., Kankare V., Puttonen E., Hollaus M., Pfeifer N. 2017. 
Reconstructing stem cross section shapes from terrestrial laser 
scanning. IEEE Geoscience and Remote Sensing Letters 14: 
272–276. DOI 10.1109/LGRS.2016.2638738.

Wang D. 2020. Unsupervised semantic and instance segmen-
tation of forest point clouds, ISPRS Journal of Photogram-
metry and Remote Sensing165: 86–97. DOI 10.1016/j.
isprsjprs.2020.04.020.

Wang Y., Lehtomäki M., Liang X., Pyörälä J., Kukko A., Jaakkola 
A., Liu J., Feng Z., Chen R., Hyyppä J. 2019. Is field-measured 

tree height as reliable as believed – A comparison study of tree 
height estimates from field measurement, airborne laser scan-
ning and terrestrial laser scanning in a boreal forest. ISPRS Jo-
urnal of Photogrammetry and Remote Sensing 147: 132–145. 
DOI 10.1016/j.isprsjprs.2018.11.008.

Wężyk P. 2006. Wprowadzenie do technologii skaningu laserowe-
go w leśnictwie. Roczniki Geomatyki 4 (4): 119−132.

Wężyk P. 2010. Naziemny skaning laserowy, w: Geomatyka 
w  Lasach Państwowych – Cześć I. Podstawy. Centrum In-
formacyjne Lasów Państwowych, Warszawa, 343–357. ISBN 
978-83-61633-01-3.

Wężyk P., Koziol K., Glista M., Pierzchalski M. 2007. Terrestrial 
laser scanning versus traditional forest inventory. first re-
sults from the Polish forests, in:  Proceedings of the ISPRS 
Workshop 'Laser Scanning 2007 and SilviLaser 2007' (ed. P. 
Rönnholm, H. Hyyppä, J. Hyyppä), 12–14.09.2007, Espoo, 
Finland. IAPRS  36, 3 / W52, 424–429.

Wężyk P., Sroga R. 2010. Naziemny skaning laserowy w inwen-
taryzacji miąższości drzewostanów sosnowych. Roczniki Geo-
matyki 8, 7(43): 63–73.

Wężyk P., Szostak M., Zięba K., Rysiak P., Hawryło P., Ra-
tajczak M. 2015. Preliminary results of the monumental 
tree monitoring based on terrestrial laser scanning – a case 
study of the Oak Bartek in Zagnańsk (Poland). Archiwum 
Fotogrametrii, Kartografii i Teledetekcji 27: 185–200. DOI 
10.14681/afkit.2015.014.

White J., Wulder M., Varhola, A., Vastaranta M., Coops N., 
Cook B., Pitt D., Woods M. 2013. A  best practices guide 
for generating forest inventory attributes from airborne laser 
scanning data using an area-based approach. Information 
report FI-X-010, Natural Resources Canada, Canadian Fo-
rest Service, Canadian Wood Fibre Centre. DOI 10.5558/
tfc2013-132.

White J., Coops N., Wulder M., Vastaranta M., Hilker T., Tompal-
ski P. 2016. Remote sensing technologies for enhancing forest 
inventories: A  review. Canadian Journal of Remote Sensing 
42(5): 619–641. DOI 10.1080/07038992.2016.1207484.

Wilkes P., Lau A., Disney M., Calders K., Burt A., de Tanago J., 
Bartholomeus H., Brede B., Herold M. 2017. Data acquisition 
considerations for Terrestrial Laser Scanning of forest plots. 
Remote Sensing of Environment 196: 140–153. DOI 10.1016/j.
rse.2017.04.030.

Zasada M., Stereńczak K. 2013. Dokładność określania wybra-
nych parametrów rozkładów pierśnic drzew w drzewostanach 
sosnowych za pomocą naziemnego skanowania laserowego. 
Sylwan 157(12): 883–891. DOI 10.26202/sylwan.2013084.

Zasada M., Stereńczak K., Dudek W., Rybski A. 2013. Horizon 
visibility and accuracy of stocking determination on circu-
lar sample plots using automated remote measurement tech-
niques. Forest Ecology and Management 302: 171–177. DOI 
10.1016/j.foreco.2013.03.041.

Zawiła-Niedźwiecki T., Stereńczak K., Bałazy R., Węcel A., Strze-
liński P., Zasada M. 2008. The use of terrestrial and airborne 
lidar technology in forest inventory. Ambiencia 4: 57–68.

https://doi.org/10.3390/rs5020491
https://doi.org/10.3390/rs5020491
https://doi.org/10.1016/j.agrformet.2011.10.006
https://doi.org/10.1371/journal.pone.0176871
https://doi.org/10.1371/journal.pone.0176871
https://doi.org/10.1371/journal.pone.0176871
https://doi.org/10.1111/2041-%20210X.13144
https://doi.org/10.1016/j.isprsjprs.2020.04.020
https://doi.org/10.1016/j.isprsjprs.2020.04.020
https://doi.org/10.1016/j.isprsjprs.2018.11.008


194 G. Krok et al. / Leśne Prace Badawcze, 2020, Vol. 81 (4): 175–194

Zhang W., Wan P., Wang T., Cai S., Chen Y. 2019. A  novel ap-
proach for the detection of standing tree stems from plot-level 
terrestrial laser scanning data. Remote Sensing 11(2): 211.  DOI 
10.3390/rs11020211.

Zhou J., Wei H., Zhou G., Song L. 2019. Separating leaf and wood 
points in terrestrial laser scanning data using multiple optimal 
scales. Sensors 19: 1852. DOI 10.3390/s19081852.

Authors’ contributions

G.K. – concept development, manuscript preparation, 
literature review, preparation of figures and tables, editing; 
B.K. – concept development, editing; K.S. – concept deve-
lopment, editing.

Translated by: Barbara Przybylska


	_GoBack
	_GoBack
	_Hlk54116422
	_GoBack
	_bxn1po5p1mf3
	_kam6msdtrqmn
	_uv0jfkt0u5ao
	_drfifwpa5lud
	_f9mgqvvwgcm0
	_nz7i1kf1rxc1
	_r6ytdhxp67k8
	_kmz2nli5uhtd
	_b1g3lwjkb524
	_onausmq386ok
	_e1tt1s8ndviv
	_GoBack
	_xyl8uzyc6la8
	_d93j4n4tbomz
	_z9bng3rvgs65
	_krtf8okdbyls
	_9i7hm35uxe4r
	_rk3ps8kffapk
	_33tj9dj8mxvb
	_pywmj5q0aal7
	_elx2nfm6be34



