PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Optimization of turbidity and COD removal from pharmaceutical wastewater by electrocoagulation. isotherm modeling and cost analysis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present work was conducted to optimize operating parameters for electrocoagulation treatment of a pharmaceutical effluent. Chemical oxygen demand (COD) and turbidity removals were monitored for each experiment since they are good indicators of wastewater quality. The effects of three parameters such as pH (4-10), current density (i=20-80 mA/cm²), and time of reaction (t=10-30 min) were evaluated using a response surface methodology (RSM) and in particular a full factorial central composite face-centered (CCF) design. The obtained experimental data were fit to a second-order polynomial equation using multiple regressions and were also analyzed by variance analysis (ANOVA). The contour plots derived from the mathematical models were applied to determine the optimal conditions (pH of 5.31, current density of 46.83 mA/cm², and electrolysis time of 17.99 min). Under these conditions, the experimental COD and turbidity removals were found equal to 75.64 and 96.34%, respectively, which were in agreement with the values predicted by the models. The electrocoagulation mechanism was modeled using Freundlich and Dubinin-Radushkevich isotherms. The obtained results showed that the Freundlich isotherm correctly predicted the experimental data. Operating costs included energy and electrode consumption as performed for the process of treatment. It was noted that the general cost varied from 0.1053-2.8289 US$ for current densities ranging from 20-80 mA/cm² and electrolysis times from 10-30 min. Under optimal conditions, the general cost was found equal to 0.8113 US$/m³.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.1049-1061,fig.,ref.

Twórcy

  • Materials and Environmental Laboratory, Faculty of Sciences and Technology, University of Medea, Ain D'heb, Medea 26001, Algeria
  • Materials and Environmental Laboratory, Faculty of Sciences and Technology, University of Medea, Ain D'heb, Medea 26001, Algeria

Bibliografia

  • 1. LATEEF A. The microbiology of pharmaceutical effluent and its public implications. World J. Microbiol. Biotechnol. 20, 167, 2004.
  • 2. DAUGHTON C.G., TERNES T.A, Pharmaceuticals and personal care products in the environment: agents of subtle change. Environ. Health. Perspect. 107, 907, 1999.
  • 3. GROS M., PETROVIC M., BARCELÓ D. Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the Ebro river basin (northeast Spain). Environ. Toxicol. Chem. 26, 1553, 2007.
  • 4. SANTOS J.L., APARICIO I., ALONSO E. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environ. Int. 33, 596, 2007.
  • 5. TEKIN H., BILKAY O., ATABERK S.S., BALTA T.H., CERIBASI I.H. , SANIN F.D., DILEK F.B., YETIS U. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J. Hazard. Mater. B 136, 258, 2006.
  • 6. RAJ D.S.S., ANJANEYULU A. Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment. Process. Biochem. 40, 165, 2005.
  • 7. DEEGAN A.M., SHAIK B., NOLAN K., URELL K., OELGEMÖLLER M., TOBIN J., MORISSEY A. Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol. 8, 649, 2011.
  • 8. SREEKANTH D., SIVARAMAKRISHNA D., HIMABINDU H., ANJANEYULU Y. Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. Bioresource. Technol. 100, 2534, 2009.
  • 9. SNYDER S., ADHAM S., REDDING A., CANNON F., DECAROLIS J., OPPENHEIMER J., WERT E., YOON Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202, 156, 2007.
  • 10. ANDREOZZI R., CAPRIO V., MAROTTA R. VOGNA D. Paracetamol oxidation from aqueous solutions by means of ozonation and H₂O₂/UV system. Wat. Res. 37, 993, 2003.
  • 11. CHEN G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11, 2004.
  • 12. WANG C.T., CHOU W.L., KUO Y.M. Removal of COD from laundry wastewater by electrocoagulation/electroflotation. J. Hazard. Mater. 164, 81, 2009.
  • 13. GENGEC E., KOBYA M., DEMIRBAS E., AKYOL A., OKTOR K. Optimization of baker's yeast wastewater using response surface methodology by electrocoagulation. Desalination 286, 200, 2012.
  • 14. DO J.S., CHEN M.L. Decolourization of dye-containing solutions by electrocoagulation. J. Appl. Electrochem. 24, 785, 1994.
  • 15. HU C.Y., LO S.L., KUAN W.H. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminium electrodes. Wat. Res. 37, 4513, 2003.
  • 16. LARUE O., VOROBIEV E., DURAND C.V.B. Electrocoagulation and coagulation by iron of latex particles in aqueous suspensions. Sep. Purif. Technol. 31, 177, 2003.
  • 17. JAIN R., SHARMA N., RADHAPYARI K. Electrochemical treatment of pharmaceutical azo dye amaranth from waste water. J Appl Electrochem. 39, 577, 2009.
  • 18. DOMÍNGUEZ J. R., GONZÁLEZ T., PALO P., SÁNCHEZ-MARTÍN J., RODRIGO M. A., SÁEZ C. Electrochemical degradation of a real pharmaceutical effluent. Water Air Soil Pollut. 223, 2685, 2012.
  • 19. BRILLAS E., SIRÉS I. Electrochemical remediation technologies for waters contaminated by pharmaceutical residues, in: LICHTFOUSE E., SCHWARZBAUER J., ROBERT D. Environmental chemistry for a sustainable world. Volume 2: Remediation of Air and Water Pollution, pp. 297-346, 2012.
  • 20. FARHADI S., AMINZADEH B., TORABIAN A., KHATIBIKAMAL V., ALIZADEH FARD M. Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes. J. Hazard. Mater. 219-220, 35, 2012.
  • 21. BOROSKI M., RODRIGUES A. C., GARCIA J. C., SAMPAIO L.C., NOZAKI1 J., HIOKA N. Combined electrocoagulation and TiO₂ photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries. J. Hazard. Mater. 162, 448, 2009.
  • 22. MONTGOMERY D.C. Design and Analysis of Experiments, 7th ed.; John Wiley and Sons, New York, 2008.
  • 23. KALIL S.J., MAUGERI F., RODRIGUES M.I. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem. 35, 539, 2000.
  • 24. DESAI K.M., SURVASE S.A., SAUDAGAR P.S., LELE S.S., SINGHAL R.S. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. Biochem. Eng. J. 41, 266, 2008.
  • 25. IMANDI S.B., BANDARU V.V.R., SOMALANKA S.R., BANDARU S.R., GARAPATI H.R. Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste. Bioresource Technol. 99, 4445, 2008.
  • 26. NASRULLAHA M., SINGH L., WAHID Z.A. Treatment of sewage by electrocoagulation and the effect of high current density. Energy Environ. Eng. J. 1, 27, 2012.
  • 27. ARSLAN-ALATON I., KABDAS I., VARDAR B., TUNAY O. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes. J. Hazard. Mater. 164, 1586, 2009.
  • 28. BHATTI M.S., KAPOOR D., KALIA R.K., REDDY A.S., THUKRAL A.K. RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach. Desalination 274, 74, 2011.
  • 29. GHOSH D., MEDHI C.R., PURKAIT M.K. Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections. Chemosphere 73, 1393, 2008.
  • 30. DROUICHE N., GHAFFOUR N., LOUNICI H., MAMERI N. Electrocoagulation of chemical mechanical polishing wastewater. Desalination 214, 31, 2007.
  • 31. MARY N., CARROLL C., WILL G., Engineering Statistics Handbook. Statistical Engineering Division, NIST, pp. 968-973. 2003.
  • 32. SLEIMANA M., VILDOZO D., FERRONATO C., CHOVELON J.M. Photocatalytic degradation of azo dye Metanil Yellow: Optimization and kinetic modeling using a chemometric approach. Appl. Catal. B-Environ. 77, 1, 2007.
  • 33. ALEBOYEH A., DANESHVAR N., KASIRI M.B. Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chem. Eng. Prog. 47, 827, 2008.
  • 34. BEZERRAA M.A., SANTELLI R.E., OLIVEIRA E.P., VILLAR L.S., ESCALEIRA L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965, 2008.
  • 35. BAS D., BOYACI I.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78, 836, 2007.
  • 36. BOULINGUIEZ B., BOUZAZA A., MERABET I., WOLBERT D. Photocatalytic degradation of ammonia and butyric acid in plug-flow reactor: Degradation kinetic modeling with contribution of mass transfer. J. Photochem. Photobiol. A 200, 254, 2008.
  • 37. KAVITHA D., NAMASIVAYAM C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technol. 98, 14, 2007.
  • 38. DABROWSKI A. Adsorption-from theory to practice. Adv. Colloid Interf. Sci. 93, 135, 2001.
  • 39. ÖZCAN A., SAFA ÖZCAN A. Adsorption of Acid Red57 from aqueous solutions onto surfactant-modified sepiolite. J. Hazard. Mater. 125, 252, 2005.
  • 40. XU J., HE Y., ZHANG Y., GUO C., LI L., WANG Y. Removal of sulfadiazine from aqueous solution on kaolinite. Front. Environ. Sci. Eng. 7, (6), 836, 2013.
  • 41. AIT OUAISSA Y., CHABANI M., AMRANE A., BENSMAILI A. Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption. J. Environ. Chem. Eng. 2, 177, 2014.
  • 42. MERZOUK B., GOURICH B., SEKKI A., MADANI K., VIAL CH., BARKAOUI M. Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chem. Eng. J. 149, 207, 2009.
  • 43. GHERNAOUT D., GHERNAOUT B., SAIBA A., BOUCHERIT A., KELLIL A. Removal of humic acids by continuous electromagnetic treatment followed by electrocoagulation in batch using aluminium electrodes. Desalination 239, 295, 2009.
  • 44. LI Z., SCHULZ L., ACKLEY C., FENSKE N. Adsorption of tetracycline on kaolinite with pH-dependent surface charges. J. Colloid Interf. Sci. 351, 254, 2010.
  • 45. VASUDEVAN S., LAKSHMI J., SOZHAN G. Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environ. Sci. Pollut. Res. Int. 19, 2734, 2011.
  • 46. MONTGOMERY D.C. Design and Analysis of Experiments, 5th ed.; John Wiley and Sons, New York, 2000.
  • 47. OZYONAR F., KARAGOZOGLU B. Operating cost analysis and treatment of domestic wastewater by electrocoagulation using aluminum electrodes, Pol. J. Environ. Stud. 20, (1), 173, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-809b4c31-96c9-4af8-a4a6-679adb3deaf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.