PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 12 |

Tytuł artykułu

Oxidative stress and antioxidant responses of mulberry (Morus alba) plants subjected to deficiency and excess of manganese

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to relate the effects of deficiency and excess of Mn with the generation of reactive oxygen species (ROS) and altered cellular redox environment in mulberry (Morus alba L.) cv. Kanva-2 plants. Mn deficiency symptom appeared as mild interveinal chlorosis in middle leaves. Mn-excess did not produce any specific symptom. Leaf water potential (Ψ) was increased in Mn-deficient and Mn-excess mulberry plants. Mn-deficient leaves contained less Mn, less chloroplastic pigments and high tissue Fe, Zn and Cu concentrations. Starch content was increased with increasing Mn supply. While reducing sugar content increased in Mn-deficient and Mn-excess plants as well, non-reducing sugars remained unaffected in Mn-deficient plants and decreased in Mn-excess plants. Moreover, study of antioxidative responses, oxidative stress (H2O2 and lipid peroxidation) and cellular redox environment [dehydroascorbate (DHA)/ascorbic acid (AsA) ratio] in Mn-stressed mulberry plants was also undertaken. Both hydrogen peroxide and lipid peroxidation were enhanced in the leaves of Mn-deficient plants. Increased H2O2 concentration in Mn-excess leaves did not induce oxidative damage as indicated by no change in lipid peroxidation. The ratio of the redox couple (DHA/AsA) was increased both in Mn-deficient or Mn-excess plants. The activities of superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) increased in Mn-deficient plants. The activity of ascorbate peroxidase (EC 1.11.1.11) increased with increasing Mn supply. The results suggest that deficiency or excess of Mn induces oxidative stress through enhanced ROS generation and disturbed redox couple in mulberry plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

12

Opis fizyczny

p.3345-3356,fig.,ref.

Twórcy

autor
  • Department of Botany, University of Lucknow, Lucknow 226007, India
autor
  • Department of Botany, University of Lucknow, Lucknow 226007, India
autor
  • Department of Botany, University of Lucknow, Lucknow 226007, India

Bibliografia

  • Allen MD, Kropat J, Tottey S, Del Campo JA, Merchant SS (2007) Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency. Plant Physiol 143:263–277. doi: 10.1104/pp.106.088609
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi: 10.1016/0003-2697(71)90370-8
  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416. doi: 10.1104/pp.59.3.411
  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of Nutrients: micronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Academic Press, USA, p 191-248. doi: 10.1016/b978-0-12-384905-2.00007-8
  • Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917. doi: 10.1105/tpc.109.073023
  • Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium- and potassium-deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45:1259–1266. doi: 10.1093/jxb/45.9.1259
  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205
  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704. doi: 10.1111/j.1399-3054.2007.01042.x
  • Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Ann Rev Plant Physiol Plant Mol Biol 49:669–696. doi: 10.1146/annurev.arplant.49.1.669
  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364. doi: 10.1034/j.1399-3054.2003.00223.x
  • Fuhrs H, Gotze S, Specht A, Erban A, Gallien S, Heintz D, Van Dorsselaer A, Kopka J, Braun HP, Horst WJ (2009) Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to toxic manganese supply and silicon. J Exp Bot 60:1663–1678. doi: 10.1093/jxb/erp034
  • Fuhrs H, Specht A, Erban A, Kopka J, Horst WJ (2011) Functional associations between the metabolome and manganese tolerance in Vigna unguiculata. J Exp Bot 63:329–340. doi: 10.1093/jxb/err276
  • González A, Steffen KL, Lynch JP (1998) Light and excess manganese: implications for oxidative stress in common bean. Plant Physiol 118:493–504. doi: 10.1104/pp.118.2.493
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi: 10.1016/0003-9861(68)90654-1
  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition farnham royal, England: Commonwealth Agricultural Bureaux, Technical Communication No. 22 of the Commonwealth Bureau of Horticulture and Plantation Crops, East Malling, Maidstone, Kent
  • Hiltbrunner E, Flückiger W (1996) Manganese deficiency of silver fir trees (Abies alba) at a reforested site in the Jura mountains, Switzerland: aspects of cause and effect. Tree Physiol 16:963–975. doi: 10.1093/treephys/16.11-12.963
  • Husted S, Laursen KH, Hebbern CA, Schmidt SB, Pedas P, Haldrup A, Jensen PE (2009) Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions. Plant Physiol 150:825–833. doi: 10.1104/pp.108.134601
  • Kang BT, Fox RL (1980) A methodology for evaluating the manganese tolerance of cowpea (Vigna unguiculata) and some preliminary results of field trials. Field Crops Res 3:199–210. doi: 10.1016/0378-4290(80)90028-3
  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152. doi: 10.1146/annurev-arplant-042811-105522
  • Kumar P, Tewari RK, Sharma PN (2007) Excess nickel–induced changes in antioxidative processes in maize leaves. J Plant Nutr Soil Sci 170:796–802. doi: 10.1002/jpln.200625126
  • Kumar P, Tewari RK, Sharma PN (2010) Sodium nitroprusside-mediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. AoB Plants 2010: plq002-plq002. doi: 10.1093/aobpla/plq002
  • Lanquar V, Ramos MS, Lelievre F, Barbier-Brygoo H, Krieger-Liszkay A, Kramer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986–1999. doi: 10.1104/pp.109.150946
  • Law M, Charles S, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem J 210:899–903
  • Li Q, Chen LS, Jiang HX, Tang N, Yang LT, Lin ZH, Li Y, Yang GH (2010) Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biol 10:42. doi: 10.1186/1471-2229-10-42
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Lester Packer RD (ed) Methods in enzymology, vol 148. Academic Press, USA, pp 350–382. doi: 10.1016/0076-6879(87)48036-1
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275
  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht
  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220. doi: 10.1093/jxb/erq282
  • Millaleo R, Reyes-Díaz M, Alberdi M, Ivanov AG, Krol M, Hüner NPA (2013) Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. J Exp Bot 64:343–354. doi: 10.1093/jxb/ers339
  • Montgomery R (1957) Determination glycogen. Arch Biochem Biophys 67:378–386
  • Mukhopadhyay MJ, Sharma A (1991) Manganese in cell metabolism of higher plants. Bot Rev 57:117–149
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380
  • Pearson JN, Rengel Z (1997) Genotypic differences in the production and partitioning of carbohydrates between roots and shoots of wheat grown under zinc or manganese deficiency. Ann Bot 80:803–808. doi: 10.1006/anbo.1997.0523
  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148:455–466. doi: 10.1104/pp.108.118851
  • Piper CS (1942) Soil and plant analysis. Hassel Press, Adelaide
  • Polle A, Chakrabarti K (1994) Effects of manganese deficiency on soluble apoplastic peroxidase activities and lignin content in needles of Norway spruce (Picea abies). Tree Physiol 14:1191–1200
  • Polle A, Chakrabarti K, Chakrabarti S, Seifert F, Schramel P, Rennenberg H (1992) Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies L.) trees. Plant Physiol 99:1084–1089
  • Rosas A, Rengel Z, de la Luz Mora M (2007) Manganese supply and pH influence growth, carboxylate exudation and peroxidase activity of ryegrass and white clover. J Plant Nutr 30:253–270. doi: 10.1080/01904160601118034
  • Shamachary, Jolly MS (1988) A simple device for quick determination of mulberry leaf area in field. Indian J Seric 27:51–54
  • Sharma PN, Kumar P, Tewari RK (2004) Early signs of oxidative stress in wheat plants subjected to zinc deficiency. J Plant Nutr 27:451–463. doi: 10.1081/pln-120028873
  • Silber A, Bar-Tal A, Levkovitch I, Bruner M, Yehezkel H, Shmuel D, Cohen S, Matan E, Karni L, Aktas H, Turhan E, Aloni B (2009) Manganese nutrition of pepper (Capsicum annuum L.): growth, Mn uptake and fruit disorder incidence. Sci Hortic 123:197–203. doi: 10.1016/j.scienta.2009.08.005
  • Sinha P, Dube BK, Chatterjee C (2006) Manganese stress alters phytotoxic effects of chromium in green gram physiology (Vigna radiata L.) cv. PU 19. Environ Exp Bot 57:131–138. doi: 10.1016/j.envexpbot.2005.05.003
  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18:321–336
  • Tewari RK, Kumar P, Sharma PN, Bisht SS (2002) Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci 162:381–388. doi: 10.1016/s0168-9452(01)00578-7
  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses—influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694. doi: 10.1016/j.plantsci.2003.11.004
  • Tewari RK, Kumar P, Neetu Sharma PN (2005) Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Sci 169:1037–1045. doi: 10.1016/j.plantsci.2005.06.006
  • Tewari RK, Kumar P, Sharma PN (2006a) Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci Hortic 108:7–14. doi: 10.1016/j.scienta.2005.12.006
  • Tewari RK, Kumar P, Sharma PN (2006b) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153. doi: 10.1007/s00425-005-0160-5
  • Tewari RK, Kumar P, Sharma PN (2007) Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. J Integr Plant Biol 49:313–322. doi: 10.1111/j.1744-7909.2007.00358.x
  • Tewari RK, Kumar P, Sharma PN (2008) Morphology and physiology of zinc-stressed mulberry plants. J Plant Nutr Soil Sci 171:286–294. doi: 10.1002/jpln.200700222
  • Tewari RK, Kumar P, Sharma PN (2010a) Morphology and oxidative physiology of sulphur-deficient mulberry plants. Environ Exp Bot 68:301–308. doi: 10.1016/j.envexpbot.2010.01.004
  • Tewari RK, Kumar P, Sharma PN (2010b) Morphology and oxidative physiology of boron-deficient mulberry plants. Tree Physiol 30:68–77. doi: 10.1093/treephys/tpp093
  • Tewari RK, Watanabe D, Watanabe M (2012) Chloroplastic NADPH oxidase-like activity-mediated perpetual hydrogen peroxide generation in the chloroplast induces apoptotic-like death of Brassica napus leaf protoplasts. Planta 235:99–110.
  • Wei Yang TJ, Perry PJ, Ciani S, Pandian S, Schmidt W (2008) Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J Exp Bot 59:3453–3464. doi: 10.1093/jxb/ern195
  • Yu Q, Rengel Z (1999) Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins. Ann Bot 83:175–182. doi: 10.1006/anbo.1998.0811
  • Yu Q, Osborne L, Rengel Z (1998) Micronutrient deficiency changes activities of superoxide dismutase and ascorbate peroxidase in tobacco plants. J Plant Nutr 21:1427–1437. doi: 10.1080/01904169809365493
  • Yu Q, Osborne LD, Rengel Z (1999) Increased tolerance to Mn deficiency in transgenic tobacco overproducing superoxide dismutase. Ann Bot 84:543–547. doi: 10.1006/anbo.1999.0951
  • Zanão Júnior LA, Fontes RLF, César J, Neves L, Korndörfer GH, de Ávila VT (2010) Rice grown in nutrient solution with doses of manganese and silicon. R Bras Ci Solo 34:1629–1639

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-804e9d2d-0473-41ae-8a05-466a0f0ef107
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.