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Summary. The objective feature of the refl ection allows 
for using measurable physical quantities that characterize the 
processes accompanying the operation of a mechanical device, 
as signals carrying encoded information. In order to decode this 
information, the signal has to be retrieved and converted into 
a characteristic, usually determined in frequency domain. Using 
the DFT procedure, the computer allows for calculations of the 
estimates of frequency characteristics. For the effective use of 
the numerical methods, one needs to know how the information 
encoded in the signal is generated during its processing. In or-
der to investigate these problems, a model that refl ects the A/C 
conversion and the periodization of the fragment of retrieved 
signal in a closed time frame was used. The investigation of 
this model has shown that the DFT procedure generates stripes 
representing the harmonic waves of a signal only for admissible 
frequencies, equal to the total multiplicity of the inverse of sig-
nal retrieval time. To present the wave of another frequency, the 
DFT procedure generates a substitute spectrum. Consequently, 
the discrete spectrums are a result of a superposition of waves 
representing the harmonic signal components of frequencies 
that belong to the admissible set as well as waves of frequencies 
that do not belong to this set and form substitute spectrums.

K e y  w o r d s : vibroacoustic diagnostics, numerical signal 
processing, Fourier transformation.

INTODUCTION

For construction and operation of mechanical devices 
information related to its technical conditions, its proper-
ties and processes taking place is necessary. In reference 
to mechanical devices the obtainment of such knowledge 
requires a realization of a research process consisting in 
acquiring and interpretation of information. This is the 
task of technical diagnostics [4, 5, 9, 10, 11, 14]. 

A reliable source of information on a mechanical 
device is research. It is known that ‘the matter-character-
istic, objective feature of the refl ection is shown through 
generating and conveying information on the conditions 

of objects of the material world’ [17]. This feature allows 
using measurable physical quantities that characterize 
the processes accompanying the operation of a device as 
diagnostic signals carrying encoded information. In order 
to decode this information the signal has to be retrieved 
and converted into a characteristic.

Most of the processes occurring in a device in op-
eration that are the sources of the signals are series of 
events that repeat periodically. That is why the charac-
teristics of these signals are usually determined in the 
frequency domain.

Computers of high computational power and modern 
algorithms allow cheap and quick calculations of different, 
sometimes very complex frequency characteristics of the 
diagnostic signal through numerical methods. For the ef-
fective use of the numerical methods of signal processing 
one needs to know how the information encoded in the sig-
nal is generated during its processing and how the informa-
tion is distorted and presented in the signal characteristics.

THE SUBJECT OF INVESTIGATION

The subject of the investigation is a mechanical de-
vice composed of elements joined in kinematic pairs. 
An operating device can be perceived as a controlled 
acting system, schematically presented in fi gure 1. The 
system is characterized by an open fl ow of the stream 
of mass, energy and information that is divided into two 
components. The fi rst appears at the output in the form of 
a working process. The other is an uncontrolled stream 
of mass, energy and information that accompanies this 
process. In a correctly functioning device the amount of 
mass and energy in the second component is miniscule 
in comparison to the mass and energy of the fi rst one. 
Yet, the fl ow of information related to the functioning 
principle is similar to the fi rst component [10, 17].
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Fig. 1. Flow of stream of mass, energy and information

The second component of the fl ow stream appears 
in the form of processes that accompany the operation 
of the device. The most important are: deterioration, 
vibroacoustic and thermal processes. The cause-and-
effect relation between the symptoms that characterize 
the conditions of the device and the processes that take 
place in this device as well as the relation between the 
processes emitted to the outside allows using ‘refl ection’ 
for diagnostic purposes. The physical quantities that 
characterize these processes are used as signals carrying 
information on the device.

During the operation sources of wave distortions 
located in various kinematic pairs and parts of the me-
chanical device activate. Some of them have been shown 
in fi gure 2.
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Fig. 2. Sources of wave distortions

The wave distortions generated by the sources, 
marked with x

1
 (t),.....,x

n
 (t) in fi gure 3 are subject to feed-

back through propagation. Between the sources and the 
output of the system representing the investigated device 
forms a channel of fl ow of information. At the output of 
the channel appears signal ( )y t

�
 whose coordinates are 

the selected physical quantities [10, 11].

( )y t
�2 ( )x t ( )nx t

1( )x t

input

Fig. 3. The channel of the fl ow of information

In practice, individual time realizations of these 
quantities are used as diagnostic signals. The amount 
of information included in realization f(t) depends on 
its versatility that shows through changes in time. Each 
change is one bit of information. The higher the frequency 

of these changes the more information in a time unit will 
be conveyed to the output of the fl ow channel. In this 
case the vibroacoustic signals (mechanical and acoustic 
vibrations) are the best choice out of all signal emissions 
by the operating device. An additional advantage of these 
signals is their accessibility outside of the device without 
distorting their operation [2,10, 17]. 

FOURIER TRANSFORM

In 1807, the baron Jean-Baptiste Joseph Fourier, 
a mathematician, engineer, member of the French Acad-
emy presented an essay treating on the fact that periodic, 
linear function f(t) fulfi lling the Dirichlet conditions can 
be expressed as a sum of series:
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Coeffi cient a
0
 is an average value, a

n
, b

n
 are the co-

effi cients of the harmonic distribution of function f(t). 
Index n = 1,2,...,  denotes the expressions of the series, 
T – period of function f(t), v = 1/T – frequency. Because: 
v

n
 = vn = n/T and v

n+1
 = v(n+1) = (n+1)/T the increment 

v = v = 1/T = const. Equation (1) presents function f(t) as 
an infi nite sum of cosine and sine functions of discrete 
frequencies growing by a step of v.

We can assume that for the non-periodic function 
T , then v dv. Taking this assumption into account, 
after transforming series (1), we obtain a formula for the 
Fourier Transform [1, 3, 13]:

  F dttjtf )2exp()()( ∫
∞

∞−

−= πνν  (2)

The integral (2) is a functional, in which the nucleus 
exp(–j2 vt)dt, in function f(t) seeks a harmonic wave of 
the frequency of v [0, ) and describes it with a com-
plex number, containing the time-averaged t (– , )
information on the amplitude and phase of this wave. In 
the complex coordinate system this number determines 
the point that is the end of a vector (in this paper the 
complex values will be typed in bold):

F(v) = a(v)+jb(v) (3)

of the phase module and angle:

F(v) = 2 2( ) ( )a v b v+  (4)

,)](/)([)( mabarctg πννν +=Ψ where ,...2,1,0 ±±=m .
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Vector F(v) presented in fi gure 4 is a spectrum of the 
harmonic wave of frequency v

n
 contained in function f(t). 

Because operation (2) of the transformation of function f(t) is 
repeated for all frequencies from the range [0, ), transform 
F(v) show the course of signal f(t) in the frequency domain.

Fig. 4. The spectrum of the harmonic component of function 
f(t)

Using the phase module and angle from dependence 
(4), equation (3) can be notated according to the Euler 
theorem in the trigonometric form:

F(v) = F(v) cos (v)±j F(v) sin (v)= F(v) exp[±j (v)] (5)

Hence:

  a(v) = F(v) cos (v), –b(v) F(v) sin (v) (6)

In the system of three coordinates: real part a(v), 
imaginary unit jb(v), frequency v - continuous course of 
the Fourier transform is a place of the geometrical end 
of vectors F(v) just like the ones in fi gure 4, distributed 
on the axis of frequency every dv 0. Taking the depen-
dences (4) into account, we can present the transform in 
the form of two courses: module spectrum F(v)  and 
spectrum of the phase angle (v). 

Time realization f(t) is always a real function of 
time. The results of the Fourier transformation of such 
a function will be a complex transform. Knowing the 
course of the cosine and sine functions we can prove 
that a(v) = a(–v) and –b(v) = b(–v). The Fourier transform 
of the real function fulfi lls the Hermite conditions. This 
means that the real part is even and the imaginary unit 
is odd. As a consequence the course of the module is 
an even function: F(v) = F(–v)  and the course of the 
phase angle is an odd function: – (v) = (–v) [1, 3].

Time realization f(t) and Fourier transform F(v) re-
main in the equivalence relation. The equivalent pair 
f(t) F(v) fulfi lls the theorems of linearity and additive-
ness and mutual symmetry. The transform of the product 
of two functions f

1
(t) f

2
(t) equals to the wreath product 

(convolution) of their transforms F
1
(v)*F

2
(v); the reverse 

theorem is also true.

THE MEASUREMENT WINDOW

An infi nite period of function f(t) manifests through 
infi nite boundaries of integration of transformation (2). 

In diagnostic research of mechanical devices we retrieve 
a fragment of a signal f(t) : t [–T/2, T/2]. The fi nite re-
trieving time T becomes a basic period of function f(t)
and determined the frequency of the periodization of 
the retrieved fragment: v

T
 = 1/T. This is contrary to the 

assumption that T  for non-periodic function f(t) that 
the basis for the transformation of series (1) to the form 
of an integral (2) [1, 6, 8, 10]. 

Fig. 5. Diagnostic signal in the measurement window

Range [–T/2, T/2] determines a rectangular measure-
ment window such that: w(t) = 1 for t [–T/2, T/2] and 
w(t) = 0 for t [–T/2, T/2] presented in fi gure 5. The Fourier 
transformation is performed on signal f(t) : t [–T/2, T/2] 
= [ f(t) : t (– , )] w(t):
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where the transform of the rectangular measurement 
window was w(t):
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Fig. 6. Transform of the rectangular measurement window

The course of the transform W(v) for v = 0, presented 
in Figure 6, is suspended on the abscissa of the coordinate 
system. If signal f(t) contains harmonic component of 
this frequency and amplitude that equals one then this 
component should manifest in fi gure 6 in the form of 
a stripe of module spectrum F(v)  on the ordinate. 
Because the signal was retrieved in fi nite time T, then as 
a result of the convolution (7) the stripe of the spectrum 
will be represented by local maximum of the course 
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W(v) for v = 0. Because for v 0
sin

lim 1
T

T

πν
πν

=  value 

T determines the scale that will adjust the height of this 

maximum against the length of the stripe.
In the spectrum of the module of the actual signal, 

the stripes denoting the amplitudes of the individual 
harmonic components occur for different frequency v

n
,

where n = 1,2,3,... . The expression (8) will take the form:
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−

=
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The stripe of the module spectrum for v = v
n
 will 

be distorted by the rectangular measurement window 
identically as the stripe for v = 0.

The rectangular measurement window effect shows 
as a leakage and lateral waves of the Fourier transform of 
signal f(t) : t [–T/2, T/2]. The leakage makes the differen-
tiation of the neighboring stripes diffi cult and sometimes 
impossible and the lateral waves distort their value.

THE PROCESSING PRINCIPLES 
OF VIBROACOUSTIC SIGNALS

The time realization retrieved as a diagnostic sig-
nal is in fact an ergodic and stochastic process f( ,t), 
where: t – time,  – random variable. In a suffi ciently 
long range function f(t) : t [–T/2, T/2] carries encoded 
information contained in process f( ,t). The processing 
that should enable reading of this information consists 
in determining of the non-random characteristics from 
function f(t) : t [–T/2, T/2]. It is assumed that in range 
[–T/2, T/2]this function is linear, stationary and fulfi lls 
the Dirichlet conditions [1, 10]. 

The characteristics can describe signal f(t) : t [–T/2, T/2] 
in three domains: value, time and frequency. In the diag-
nostic of mechanical devices the most frequent sample is 
the one consisting in transformation of the signal to the 
frequency domain with the use of the Fourier Integral. 
This is particularly the case in vibroacoustic signals. 

Equivalence f(t) F(v) means that the following 
relation is true: f(t) 2 F(v) 2. The squared course of 
the module spectrum is a frequency image of the energy 
contained in signal f(t) and carries information of the 
intensity of the wave distortions that were activated while 
the mechanical device was in operation. This information, 
read and properly interpreted may form a message regard-
ing the technical condition of the parts and kinematic 
pairs of the device where these sources are located [2, 10].

The sources of distortions are characterized by pe-
riodic repeatability of reversible events that manifest as 
wave phenomena. The values of frequencies determined 
based on the knowledge of the system composition and 
structure represented by the device can be deemed as 
common addresses of spectral components and sources 
that generated it. The addresses of a given pair source-
component are usually different for each pair. The infor-
mation resulting from relation f(t) 2 F(v) 2 regard-

ing the value of the module of the spectral component 
of the signal is at the same time information regarding 
the energy resulting from the intensity of functioning 
of a given source of distortion. The schematics of the 
conveyance channel presented in fi gure 3 shows that 
signal f(t) : t [–T/2, T/2] carries information regarding 
the energy of different sources that are mixed due to 
mutual feedbacks. Course F(v) depicts the frequency 
decomposition of the signal that allows identifying and 
estimating the energy generated by given sources. That 
is why the Fourier transformation is an important tool 
in signal processing used in vibracoustic diagnostics of 
mechanical devices.

The computers allow calculations of the estimates 
of different characteristics that are diffi cult to deter-
mine through direct analogue measurement. The Fourier 
spectrum is a perfect example here. The database for the 
calculations of the spectrum is a series of values repre-
senting continuous time realizations of signal fragment 
f(t) : t [–T/2, T/2] [10, 11, 16].

MODEL OF A DISCRETE SIGNAL

The retrieved time realizations f(t) : t [–T/2, T/2] are 
continuous. A series of values from which the computer 
will calculate the Fourier transform is generated in two 
phases by the A/C converter from the retrieved signal:
1. sampling that consists in discretization of the function 

argument: f(t) : t [–T/2, T/2] in moments: t
0
,t

1
,...,t

k
,...t

N–1

[–T/2, T/2]. The difference: t = t
k+1

 – t
k
 = T

e
 determines 

the constant period of sampling and the frequency 
of sampling: v

e
 = 1/T

e
. Values T and T

e
, determine the 

number of samples: N = T/T
e
 = int. that will fi t into the 

measurement window,
2. quantization of realization f(t) : t [–T/2, T/2] in mo-

ments: t
0
,t

1
,...,t

k
,...t

N–1
 that determines the value of signal 

f(kT
e
) for: k = 0,1,2,....,N–1. 

The discrete function: f(kT
e
) represents a series of 

subsequent events each of which has an assigned number 
value. Separately, none of them carries any important 
information, but a series of N – events in timely order, 
does. In the database obtained during the A/C conver-
sion information is stored regarding the signal in the 
measurement window in the moment of sampling. Other 
information that can exist in the signal is lost. 

In order to analyze the process of generating the infor-
mation during numerical processing we can use a model 
that refl ects the A/C conversion and the periodization 
of the fragment of the retrieved signal in a closed time 
frame [10, 12,15]. For the creation of such a model we 
can use the Dirac comb:

( ) ( )et t T
α

δ α
∞

=−∞

= −∪ , where ,..., 1,0,1,...,α = −∞ − ∞,

shown in fi gure 7a. It is a series of impulses evenly dis-
tributed on the time axis maintaining a distance equal to 
signal sampling period t = T

e
 =const. The multiplication 

by the function of window w(t) takes into account the 
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retrieval of the signal of the period of [–T/2, T/2] and 
limits the number of samples determined by the Dirac 
impulses to the value N:

( )( ) ( ) : ( , )

( ) ( )

e

e

f kT f t t

w t t T
α

δ α

•

∞

=−∞

= ∈ −∞ ∞ ⋅

⋅ ⋅ −∪  (10)

The periodization of signal (10) we can refl ect through 

convolution of signal ( )ef kT•  through Dirac comb ’

( ) ( )t t T
η

δ η
∞

=−∞

= −∪  in which the impulses are distributed 

on the time axis every t = T =const. and are numbered 

with an index:  = – ,...,–1,0,1,2,..., :

( )( ) ( ) : ( , )

( ) ( ) ( )

e

e

f kT f t t

w t t T t T
α η

δ α δ η
∞ ∞

=−∞ =−∞

= ∈ −∞ ∞ ⋅

⋅ ⋅ − ∗ −∪ ∪  (11)

Fig. 7. Dirac comb in the time and frequency domain

Signal f(kT
e
) for k = 0,1,2,...,N–1 is a series of events 

that is why operations (10) and (11) marked ,∪  are not 
algebraic addition but a summing of events. 

DISCRETE FOURIER TRANSFORM

Taking into account the theorem on the transform 
of the algebraic product and convolution of two func-
tions the Fourier transformation of signal f(kT

e
) can be 

notated as follows: 

  F(v) = [ −∫
−

2/

2/

)2exp()(

T

T

dttjtf πν

∫
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[ ’ dttjt )2exp()]( πν−⋅ ∫
∞

∞−

∗ [ dttjt )2exp()]( πν−⋅  (12)

The Fourier integral from –T/2 to T/2 takes into ac-
count the algebraic multiplication through window w(t). 
The result of the integration is the convolution of the 
function f(t) (– , ) transform and the transform of the 
rectangular measurement window occurring on the right 
side in formula (7).

The Fourier transform of the Dirac comb that is de-
termined in the time domain remains the Dirac comb in 
the frequency domain [15]. It has a form of distribution 
of a period of 1/ t, shown in fi gure 7b. The transforms 

(t) and ’(t) will be respectively:

∪
∞

−∞=

−=
α

ανδνν )()( ee , ’( ) ( )T T

η

ν ν δ ην
∞

=−∞

= −∪ ,

where: v
e
 = 1/ t = 1/T

e
, v

T
 = 1/ t = 1/T and ,  = – ,...,

–1,0,1,..., .

Algebraic multiplication through comb ’(t) will 
result in a discretization of the spectrum to the form of 
a series of vectors referred to as stripes. Value v

T
 = 1/T

determines a constant distance between the stripes and 
determines the discrete spectrum resolution. The values 

v
T
 determine frequencies for which these stripes can 

appear. The rectangular measurement window limits the 
number of stripes to value N.

The convolution by (v) results in a periodization 
of the discrete spectrum. It is shown as a reproduction 
of the spectrum every v

e
 value for an infi nite number of 

times because  = – ,...,–1,0,1,..., . Frequencies v
T
 and v

e
,

occurring before the sums of events in the transforms 
of the Dirac combs ’(v) and (v) determine the scale 
of the multiplication operation and do not infl uence the 
way the discrete spectrum is formed.

Figures 8a, b and c show the process of the forma-
tion of the discrete spectrum of the module of the tested 
signal represented by the real function of time. 

According to the Hermit conditions, the spectrum 
of the module of the real function is even. In fi gure 8a 
spectrum F(v)  and its even refl ection F(–v)  are sym-
metrical and form a unity that as a result of periodization 
is ‘suspended’ on the abscissa determined by stripes 0 v

e

and 1 v
e
. The reproduction of the spectrum results in 

that the information in all ranges [ v
e
, ( +1)  v

e
), where 

 = – ,...,–1,0,1,...,  will be the same. That is why for the 
considerations only one range needs to be included: [0, v

e
). 

In this range N = v
e
/v

T
, stripes will fi t that are numbered 

with index n = 0,1,...,N–1. 
In fi gure 8b spectrum F(v) , suspended on abscissa  

v
e
 = 0 v

e
and its left hand refl ection F(–v)  suspended on 

abscissa v
e
 = 1 v

e
 are subject to superposition in frequency 

range [0, v
e
). The determined spectrum is a sum of super-

imposed courses: F(v)  and F(–v) . This phenomenon 
is called aliasing.

Fig. 8. Periodization, aliasing and fi ltering of the discrete spec-
trum
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The middle of range [0,v
e
) is determined by the Ny-

quist frequency: v
Nyq

 = 0,5v
e
. If in spectrum F(v)  that 

is suspended on stripe 0 v
e
 occurs a local maximum 

for frequency v>v
Nyq

 then, due to symmetry, the same 
maximum will occur in spectrum F(–v) , suspended on 
stripe 1 v

e
, for v<v

Nyq
. As a result of aliasing in frequency 

range [0,v
Nyq

) spectral information will be conveyed that 
is not contained in the signal. If we want to avoid that, 
we should use a low-pass fi lter of the signal that will 
damp the harmonic components of frequencies equal or 
greater than the Nyquist frequencies as shown in fi gure 8c.

If signal f(kT
e
) determined by formula (11) is subjected 

to low-pass fi ltering then in frequency range [0,v
Nyq

) then 
at the most N/2 of the stripes of the discrete spectrum 
will fi t that are numbered with an index: n = 0,1,2,...N/2–1.

Replacing the integration with addition after 
k = 0,1,2,...N/2–1 and substituting time and frequency in 
the discrete form from dependence (12) we can derive 
a formula for the discrete Fourier transform:

  F ∑
−

=

−⋅=
1

0

)2exp()(
1

)(
N

k

eTeT kTnjkTf
T

n νπν  (13)

In the dimensionless domain of indexes k and n,
transformation (13) takes the form of Discrete Fourier 
Transform (DFT): 

  F ∑
−

=

−⋅=
1

0

)/2exp()(
1

)(
N

k

Nnkjkf
N

n π  (14)

Re

Im

m,ν

F(0)
F(ν1)

F(ν2) F(ν3) F(ν4)

Ψ(ν1)

Ψ(0)

Fig 9. Signal discrete spectrum

Dependence (14) shows a system of equations for 
n = 0,1,2,...N/2–1. The results of the solution of each equa-
tion is transform F(n) in the form of a complex number that 
determines the module and phase angle of a single stripe 
of a spectrum for frequency nv

T
. The whole spectrum is 

a sum of harmonic components of a signal occurring on 
the frequency axis for values nv

T
:

  F ∪
12/

0

)(
−

=

=
N

n

nν F(n) (15)

Figure 9 presents the signal discrete spectrum cal-
culated from the DFT dependence.

SPECTRUM OBTAINED THROUGH 
THE DFT METHOD

While generating spectrum F(n) of signal f(k) the 
discretization with period T

e
 results in a periodization of 

the spectrum with period v
e
 = 1/T

e
. Sampling frequency 

v
e
 = 1/T

e
 determines band [0,v

Nyq
 = 1/2v

e
 where the stripes 

of the discrete spectrum are contained. 
The periodization of the signal f(k) with period T

results in a discretization of the spectrum with resolution 
v

T
 = 1/T. The DFT procedure generates stripes only for 

admissible frequencies nv
T
 of values equal to the total 

multiplicity of the inverse of signal retrieval time. The 
strips carrying original information on the harmonic 
components of the signal, are numbered with index 
n = 0,1,2,...,N/2–1.

The frequency structure of the signals generated by 
the sources of wave distortions that function in mechani-
cal devices is unknown. The frequencies of the harmonic 
components that form the signal depend on the physical 
nature of the sources and they are independent from 
value T and v

e
 = 1/T

e
. That is why we should expect that 

the frequencies of many components (possibly all) of 
the retrieved signal would not belong to the admissible 
set [7, 10, 11].

Figure 10a shows the signal in the form of a harmonic 
wave that was subjected to a discrete Fourier transforma-
tion. Because the retrieval time T = n T

f.h.
 where n = 2 and 

T
f.h.

– the period, the frequency of the wave belongs to 
the admissible set. The spectrum of the module, presents 
the stripe for n = 2 shown in fi gure 10b. The reduction 
of time T results in that T n T

f.h.
 and frequency v

T
 = 1/T

of the wave does not belong to the admissible set. In 
order to present this wave the DFT procedure generates 
a substitute spectrum in the form of a set of waves of 
admissible frequencies that do not exist in the signal. 
The local maximum of the substitute spectrum shown 
in fi gure 10c occurs for admissible frequencies close to 
the value of 1/T

f.h.
. We can expect that the result of the 

superposition of waves of the substitute spectrum will 
be the approximate course of the signal. 

Fig. 10. The signal, its real and substitute spectrum
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The analysis of the results presented in Figure 10 gives 
grounds for a formulation of the following hypothesis: the 
waves of the discrete substitute spectrum are determined 
by the DFT procedure according to the Fourier series for 
a preset and limited set of admissible frequencies nv

T
.

The trueness of the hypothesis can be verifi ed through 
comparing the spectrum of the signal obtained from the 
development into a Fourier series with the spectrum of 
this signal calculated with the DFT method.

After a transformation of the sum of the cosine and 
sine function in formula (1) the Fourier series can be 
notated in the form of a sine function taking into account 
the phase angle: 
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In series (16) function f(k) where k = 0.1,2,...,N–1  
represents a discrete form of the investigated wave 
f(t) = Asin2 vt retrieved in fi nite time T. The argument 
of the sine function determines the dimensionless domain 
of admissible frequencies that belong to range [0,v

Nyq
)

marked with index: n = 0,1,2,...,N/2–1. In comparison to 
series (1), in formula (16) the summing was limited to 
N/2 of the components. Symbol 

n
 denotes the phase 

angle of the n–th component of function f(k). 
Because in the experiment T = const was assumed, 

the set of admissible frequencies preset for the develop-
ment of function f(k) will be constant. In order to obtain 
information that could confi rm (or reject) the assumed 
hypothesis one should investigate different substitute 
spectrums. To this end we need to ensure the possibility 
of modifi cation of the wave frequency without changing 
the retrieval time.

Let wave frequency v = (1+ )/T. Then for  = 0 – a sin-
gle wave period equals T and its frequency v v

T
 = 1/T. For 

each value (0,1) maintaining a constant retrieval time 
the frequency of the wave will not belong to the admis-
sible set. After substituting the dependence: v = (1+ )/T,
T = NT

e
 and t = kT

e
, the argument of the sine function in 

formula (16), assumes the form 2 (1+ )k/N. Then:

N

k
Akf )1(2sin)( επ +=  (17)

Wave f(k) has been determined for A = 1 and N = 16  
samples numbered with index: k = 0,1,2,...,15. The modi-
fi ed wave presented in fi gure 11 was generated for:  = 2/3. 
Taking the Nyquist criterion into account the spectrum 
was determined for N/2–1 of the frequencies marked 
with index n = 0,1,...,7. 

Substitute spectrums of the module of the investigated 
wave calculated from the Fourier series and through the 
DFT method have been presented in fi gure 12. The stripes 
superimposed on the admissible frequency mesh show 
a spectrum obtained from formula (16) and the stripes 
in the immediate vicinity through the DFT method. The 
height of the stripes obtained with two methods is identi-
cal, which is confi rmed by the adopted hypothesis.

DISCRETE SPECTRUM DISTORTION

The average value of the original wave of  = 0, repre-
sented by the component of the spectrum for n = 0, equals 
zero. The performed modifi cation of the frequency of this 
wave results in an unintended and incidental change of 
the average value of the retrieved fragment of the signal. 
That is why in the substitute spectrum in fi gure 12 the 
stripes for n = 0 are non-zero.

Fig. 11. Wave for  = 2/3

Fig. 12. Discrete wave spectrums for  = 2/3

Fig. 13. Discrete wave spectrums for  = 2/3 after resetting of 
the average value

In fi gure 11 the axis of abscissa has been shifted so 
that the average value of the fragment of the wave for 
 = 2/3 equaled zero. Figure 13 presents the courses of the 

discrete spectrum of the module of this fragment of the 
wave after shifting the axis of abscissa. The component 
of the spectrum for n = 0 equals zero and the stripes rep-
resenting the outstanding components are the same as in 
fi gure 12 before the shift has been carried out.

From the course of transform W(v) in fi gure 6 and 
dependence (8) results that for the admissible frequen-
cies n/T = nv

T
 when n = 1,2,... = int, complex integer 

F(v)*W(v) = 0 because W(v) = 0. For n = 0, this product is 
other than zero and the transform of the window infl u-
ences the stripe of the spectrum through change of the 
scale. Formula (9) confi rms that this statement is correct 
for each stripe of the spectrum irrespective of value nv

T

for which it occurred on the condition that n = int.
Because in the discrete spectrum the total multiplicity 

of the inverse of the retrieval time determines the set of 
admissible frequencies, the discretization of the spectrum 
eliminates the distortions triggered by the rectangular 
measurement window in the form of a leakage and lateral 
waves. The fi ltering characteristics of periodical distribu-
tion ’(t) starts manifesting itself. Because dependence 
(7) remains true we can assume that the distortions of 
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the discrete spectrums from the rectangular measurement 
window would display themselves in a different form 
than it directly results from this dependence.

In order to estimate the transfer of the information the 
original harmonic waves has been reproduced from the 
substitute spectrum. Figure 14 presents the comparison 
of the course of the wave generated for  = 2/3 and the 
course of the wave that was a result of a superposition 
of the harmonic waves recovered from the stripes of 
the substitute spectrum. Figure 15 shows the residuum 
determined by the difference between the recovered and 
the original wave. 

Fig. 14. The original and recovered waves for  = 2/3 

Fig. 15. Residuum of the original and recovered waves for 
 = 2/3

CONCLUSIONS

The discrete spectrums generated and emitted by 
mechanical devices in operation are a result of a super-
position of waves representing the harmonic components 
of the signal of frequencies that belong to the admissible 
set as well as waves of frequencies that do not belong to 
this set and form substitute spectrums. Thus resulting 
distortions of the discrete spectrum are consequence of 
the existence of a rectangular measurement window of 
retrieval time of T.

The DFT procedure generates a substitute spectrum 
according to the Fourier series irrespective of the re-
searcher’s intention. The stripes of the spectrum are deter-
mined for admissible frequencies that belong to a limited 
range. The values of these frequencies and the boundary 
frequencies of this range are preset and determined by 
values T selected by the researcher. The substitute spec-
trum transfers approximately true frequency information 
in the form of a sum of untrue information that is not in 
the signal. The amount of information is limited by the 
width of the range [0,v

Nyq
). 

The superposition of the waves of the substitute spec-
trum, taking the phase shifts into account, recovers the 
course of the harmonic wave. The courses of the residuum 
determined from the comparison of the original wave and 
the same wave obtained from the substitute spectrum 
shows that the recovery is inaccurate and incomplete. 
This mainly results from the fact that the recovered wave 
is a result of limited number N/2 – waves of the substi-

tute spectrum contained in frequency range [0,v
Nyq

) not 
a infi nite number of waves as the Fourier series requires.

The fi nite retrieval time, selected by the researcher, 
results in the fact that the average value of the processed 
fragment of the signal is mostly non-zero. The informa-
tion transferred by the stripe of the discrete spectrum for 
n = 0 is incidental and thus unreliable. The distortion of 
the spectrum from the constant component can be elimi-
nated by assuming this value to be zero by defi nition. 
From the courses of the residuum we can see that the 
wave recovered from the components of the substitute 
spectrum was more accurate as compared to the original 
wave. Such an action does not trigger a change of the 
components for n > 0 and does not generate additional 
spectrum distortions.

 The existence of the measurement window, which is 
an inevitable consequence of the limited retrieval time, as 
well as discretization of the signal during the A/C conver-
sion are in opposition to the assumptions based on which 
from series (1) Fourier integral was derived (2). That is 
why the described distortions of the discrete spectrum 
are inevitable and with today’s level of knowledge cannot 
be eliminated nor reduced through adjustment windows 
used when determining the spectrums with analogue 
methods (spectrometers).

Each adjustment window is a function of weight. 
The signal multiplied by this function assumes a zero 
value at the beginning and at the end of the retrieval. 
This multiplication results in deletion of some informa-
tion contained therein and addition of other, carried by 
the window function not contained in the signal. Prod-
uct (7) assumes a form F(v)*W

k
(v) and transform of the 

adjustment window is W
k
(v) 1. That is why the discrete 

Fourier transform of the fragment of the signal improved 
by the adjustment window, beside the harmonic compo-
nents of the signal and substitute spectrums also includes 
the components contained in the window function. This 
results in an additional inaccuracy of the information 
contained in the discrete spectrum.

The distortions of the discrete Fourier spectrum of 
the retrieved fragment of the signal that come from the 
substitute spectrums can be reduced by extending of the 
retrieval time. It is known that for constant bandwidth 
[0,v

Nyq
) as the retrieval time T grows the size of the set of 

admissible frequencies increases and the distance between 
them decreases. The number of the signal components that 
are probable to fi nd their place in the set of admissible 
frequencies grows. As a result, the amount of information 
that can be accurately conveyed in the discrete spectrum 
increases. Also increases the number of the components 
of the substitute spectrums recovering the components 
of the signal of frequencies that do not belong to this 
set, which results in a better accuracy of the recovery.

For T  frequency v
T

0 the admissible frequency 
set becomes infi nitely large and the discrete spectrum 
approaches a continuous form. A practical realization 
of such a case is impossible due to an infi nite length of 
the retrieval time. Even if that were possible, the deter-
mination of a discrete spectrum of an infi nitely dense 
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set of admissible frequencies would not eliminate the 
distortions. 
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TRANSFORMACJA FOURIERA – WA NE NARZ DZIE

 W DIAGNOSTYCE WIBROAKUSTYCZNEJ

S t r e s z c z e n i e . Mierzalne wielko ci fi zyczne, charak-
teryzuj ce procesy towarzysz ce funkcjonowaniu urz dzenia
mechanicznego, mog  by  wykorzystane jako sygna y nios ce
zakodowane informacje. Aby je odczyta  sygna  nale y pobra
i obrobi . Obróbka polega najcz ciej na transformacji sygna-
u do dziedziny cz stotliwo ci metod  DFT. Wykorzystanie 

takiej obróbki wymaga wiedzy jak informacja diagnostyczna 
jest wytwarzana w dyskretnej charakterystyce sygna u. W tym 
celu nale y bada  model, który odzwierciedla pobranie sygna u
w sko czonym przedziale czasu, jego przetwarzanie A/C i pe-
riodyzacj . Badania wykazuj , e procedura DFT wytwarza 
pr ki reprezentuj ce sk adowe harmoniczne sygna u tylko dla 
cz stotliwo ci nv

T
, które s  ca kowit  krotno ci  odwrotno ci

czasu pobrania. Sk adowe o innych cz stotliwo ciach s  przed-
stawiane w postaci widm zast pczych. W konsekwencji, widma 
dyskretne s  rezultatem superpozycji fal o cz stotliwo ciach
nale cych do zbioru dopuszczalnych i widma zast pczych re-
prezentuj cych fale, które do tego zbioru nie nale .

S o w a  k l u c z o w e : diagnostyka wibroakustyczna, nu-
meryczna obróbka sygna ów transformacja Fouriera.


