PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 78 | 1 |

Tytuł artykułu

Renoprotective effect of red grape (Vitis vinifera L.) juice and dark raisins against hypercholesterolaemia-induced tubular renal affection in albino rats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Red grape juice (RGJ) and dark raisins (DR) are rich in polyphenols and antioxidants. This study aimed to assess the efficacy of RGJ and DR in protecting the renal tubules against hypercholesteraemic-induced pathological changes. Materials and methods: Forty albino rats divided into four groups (n = 10) were utilised in this study. They included the control, high cholesterol diet (HCD)-fed, HCD+RGJ-fed, and HCD+DR-fed groups. Body weight gain, food and water intake, blood and insulin levels, lipid profile and kidney functions were assessed at the start of the experiment and after 12 weeks. The right kidney was dissected out and processed for both light and electron microscopic examination. Desmin and cytokeratin antibodies were utilised as histologic markers to assess the integrity of the proximal (PTs) and distal tubules (DTs) of the kidney. Results: Administration of HCD resulted in hypercholesterolaemia in rats as evidenced by the lipid profile. The PTs of hypercholesteraemic rats appeared dilated with hyaline casts and mitochondria in most of the tubular cells were affected. Immunohistochemical assessment revealed affection of both PTs and DTs. Both RGJ and DR, when administered along with the HCD for 12 weeks, improved the lipid profile, kidney functions as well as the histologic and cellular changes-induced by hypercholesterolaemia in the rats. The effect of raisins was superior to RGJ which might be due to its high contents of fibres and proteins. Conclusions: This study highlighted the importance of supplementation of red grape and raisins in protection against the harmful effects induced by deposition of fat on the renal tubules’ structure and function. (Folia Morphol 2019; 78, 1: 91–100)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Numer

1

Opis fizyczny

p.91-100,fig.,ref.

Twórcy

autor
  • Anatomy Department, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
autor
  • Biology Department, Faculty of Science, King Abdulaziz University, Saudi Arabia
autor
  • Anatomy Department, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
autor
  • Biology Department, Faculty of Science, King Abdulaziz University, Saudi Arabia
autor
  • Home Science Education Department, Faculty of Education, Umm al-Qura University, Makkah, Saudi Arabia
autor
  • Anatomy Department, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
  • Medical Histology Department, Faculty of Medicine, Mansoura University, Egypt

Bibliografia

  • 1. Abdel-Hamid GA. Effect of red grape juice on renal glomeruli in hypercholestremic rats. Life Science J. 2014; 11(6): 234–245.
  • 2. Almajwal AM. Elsadek MF. Lipid-lowering and hepatoprotective effects of Vitis vinifera dried seeds on paracetamol-induced hepatotoxicity in rats. Nutrition Res Pract. 2015; 9(1): 37–42.
  • 3. Altunkaynak ME, Ozbek E, Altunkaynak BZ, et al. The effects of high-fat diet on the renal structure and morphometric parametric of kidneys in rats. J Anat. 2008; 212(6): 845–852, doi: 10.1111/j.1469-7580.2008.00902.x, indexed in Pubmed: 18510511.
  • 4. Anderson JW, Waters AR. Raisin consumption by humans: effects on glycemia and insulinemia and cardiovascular risk factors. J Food Sci. 2013; 78 Suppl 1: A11–A17, doi: 10.1111/1750-3841.12071, indexed in Pubmed: 23789931.
  • 5. Ayuob N. Can raisins ameliorate hypercholesterolemia-induced nephropathy? What is the evidence? Egypt J Histol. 2014; 37(4): 677–688, doi: 10.1097/01. ehx.0000455076.29699.52.
  • 6. Bagchi D, Bagchi M, Stohs Sj, et al. Cellular protection with proanthocyanidins derived from grape seeds. Ann N Y Acad Sci. 2002; 957: 260–270, indexed in Pubmed: 12074978.
  • 7. Baghdadi H. Antioxidant potential of quercetin: remarkable protection against hypercholesterolemia in rats. Br J Med Med Res. 2014; 4(26): 4382–4391, doi: 10.9734/bjmmr/2014/11126.
  • 8. Balarini CM, Oliveira MZt, Pereira TMc, et al. Hypercholesterolemia promotes early renal dysfunction in apolipoprotein E-deficient mice. Lipids Health Dis. 2011; 10: 220, doi: 10.1186/1476-511X-10-220, indexed in Pubmed: 22117541.
  • 9. Bipasha M, Goon S. Fast food preferences and food habits among students of private universities in Bangladesh. South East Asia Journal of Public Health. 2014; 3(1): 61–64, doi: 10.3329/seajph.v3i1.17713.
  • 10. Bladé C, Arola L, Salvadó MJ. Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol Nutr Food Res. 2010; 54(1): 37–59, doi: 10.1002/mnfr.200900476, indexed in Pubmed: 19960459.
  • 11. Castilla P, Echarri R, Dávalos AD, et al. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am J Clin Nutr. 2006; 84: 252–62.
  • 12. Curthoys NP, Moe OW. Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol. 2014; 9(9): 1627–1638, doi: 10.2215/CJN.10391012, indexed in Pubmed: 23908456.
  • 13. D’Amico G. Tubulo-interstitial damage in glomerular diseases: its role in the progression of the renal damage. Nephrol Dial Transplant. 1998; 13 Suppl 1: 80–85, indexed in Pubmed: 9507504.
  • 14. Doshi P, Adsule P, Banerjee K, et al. Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) byproducts. J Food Sci Technol. 2015; 52(1): 181–190, doi: 10.1007/s13197-013-0991-1, indexed in Pubmed: 25593367.
  • 15. Drury RAB. and Wallington EA. Carleton histological technique. Oxford. New York. Toronto. Oxford University Press. 1980.
  • 16. Emma F, Montini G, Parikh S, et al. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nature Reviews Nephrology. 2016; 12(5): 267–280, doi: 10.1038/nrneph.2015.214.
  • 17. Feng R, Lu Y, Bowman LL, et al. Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem. 2005; 280(30): 27888–27895, doi: 10.1074/jbc.M503347200, indexed in Pubmed: 15944151.
  • 18. González-Centeno MR, Jourdes M, Femenia A, et al. Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). J Agric Food Chem. 2012; 60(48): 11850–11858, doi: 10.1021/jf303047k, indexed in Pubmed: 23101762.
  • 19. Healy E, Brady HR. Role of tubule epithelial cells in the pathogenesis of tubulointerstitial fibrosis induced by glomerular disease. Curr Opin Nephrol Hypertens. 1998; 7(5): 525–530, indexed in Pubmed: 9818199.
  • 20. Innis SM. Dietary lipids in early development: relevance to obesity, immune and inflammatory disorders. Curr Opin Endocrinol Diabetes Obes. 2007; 14(5): 359–364, doi: 10.1097/MED.0b013e3282be90b9, indexed in Pubmed: 17940463.
  • 21. Jiang T, Wang Z, Proctor G, et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem. 2005; 280(37): 32317–32325, doi: 10.1074/jbc.M500801200, indexed in Pubmed: 16046411.
  • 22. Johannessen J. Instruction and techniques in electron microscopy in human medicine. Mchqraw-Hill Int., Book Co 1978.
  • 23. Joles JA, Kunter U, Janssen U, et al. Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. J Am Soc Nephrol. 2000; 11(4): 669–683, indexed in Pubmed: 10752526.
  • 24. Kang JS, Lee WK, Lee CW, et al. Improvement of high-fat diet-induced obesity by a mixture of red grape extract, soy isoflavone and L-carnitine: implications in cardiovascular and non-alcoholic fatty liver diseases. Food Chem Toxicol. 2011; 49(9): 2453–2458.
  • 25. Kwok CY, Wong CY, Yau MC, et al. Consumption of dried fruit of Crataegus pinnatifida (hawthorn) suppresses high-cholesterol diet-induced hypercholesterolemia in rats. J Funct Foods. 2010; 2(3): 179–186, doi: 10.1016/j.jff.2010.04.006.
  • 26. Lee J, Hong J, Lee K, et al. Endovascular therapy of cerebral arterial occlusions: intracranial atherosclerosis versus embolism. J Stroke Cerebrovasc Dis. 2015; 24(9): 2074–2080, doi: 10.1016/j.jstrokecerebrovasdis.2015.05.003.
  • 27. Li S, Chen G, Zhang C, et al. Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci Hum Well. 2014; 3(3-4): 110–116, doi: 10.1016/j.fshw.2014.11.002.
  • 28. Mazza A, Lenti S, Schiavon L, et al. Nutraceuticals for serum lipid and blood pressure control in hypertensive and hypercholesterolemic subjects at low cardiovascular risk. Adv Ther. 2015; 32(7): 680–690, doi: 10.1007/s12325-015-0229-x, indexed in Pubmed: 26202829.
  • 29. Mount P, Davies M, Choy SW, et al. Obesity-Related chronic kidney disease-the role of lipid metabolism. Metabolites. 2015; 5(4): 720–732, doi: 10.3390/metabo5040720, indexed in Pubmed: 26690487.
  • 30. Muchaneta-Kubara EC, el Nahas AM. Myofibroblast phenotypes expression in experimental renal scarring. Nephrol Dial Transplant. 1997; 12(5): 904–915, indexed in Pubmed: 9175042.
  • 31. Ong A, Fine L. Tubular-Derived growth factors and cytokines in the pathogenesis of tubulointerstitial fibrosis: implications for human renal disease progression. Am J Kidney Dis. 1994; 23(2): 205–209, doi: 10.1016/s0272-6386(12)80973-5.
  • 32. Otunola GA, Oloyede OB, Oladiji AT. Effects of diet induced hypercholesterolemia on the lipid profile and some enzyme activities in female Wistar rat. Afr J Biochem Res. 2015; 4(6): 149–154.
  • 33. Petrica L, Marius R, Schiller A, et al. Prognosis Markers Of Tubulointerstitial Injury In Primary Type I Mesangiocapillary Glomerulonephritis. FACTA UNIVERSITATIS Series: Medicine and Biology. 2001; 8(1): 19.
  • 34. Pinheiro FV, Pimentel VC, De Bona KS, et al. Decrease of adenosine deaminase activity and increase of the lipid peroxidation after acute methotrexate treatment in young rats: protective effects of grape seed extract. Cell Biochem Funct. 2010; 28(1): 89–94, doi: 10.1002/cbf.1627, indexed in Pubmed: 20029956.
  • 35. Preuss HG, Wallerstedt D, Talpur N, et al. Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects: a pilot study. J Med. 2000; 31(5-6): 227–246, indexed in Pubmed: 11508317.
  • 36. Safa J, Argani H, Bastani B, et al. Protective effect of grape seed extract on gentamicin-induced acute kidney injury. Iran J Kidney Dis. 2010; 4(4): 285–291, indexed in Pubmed: 20852368.
  • 37. Sousa E, Uchôa-Thomaz A, Carioca J, et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci Tech (Campinas). 2014; 34(1): 135–142, doi: 10.1590/s0101-20612014000100020.
  • 38. Spiller GA, Story JA, Furumoto EJ, et al. Effect of tartaric acid and dietary fibre from sun-dried raisins on colonic function and on bile acid and volatile fatty acid excretion in healthy adults. Br J Nutr. 2003; 90(4): 803–807, indexed in Pubmed: 13129449.
  • 39. Stemmer K, Perez-Tilve D, Ananthakrishnan G, et al. Highfat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney. Dis Model Mech. 2012; 5(5): 627–635, doi: 10.1242/dmm.009407, indexed in Pubmed: 22422828.
  • 40. Taylor R, Hayes KE, Toth LA. Evaluation of an anesthetic regimen for retroorbital blood collection from mice. Contemp Top Lab Anim Sci. 2000; 39(2): 14–17, indexed in Pubmed: 11487233.
  • 41. Thiruchenduran M, Vijayan NA, Sawaminathan JK, et al. Protective effect of grape seed proanthocyanidins against cholesterol cholic acid diet-induced hypercholesterolemia in rats. Cardiovasc Pathol. 2011; 20(6): 361–368, doi: 10.1016/j.carpath.2010.09.002, indexed in Pubmed: 21130002.
  • 42. Wan CW, Wong CNY, Pin WK, et al. Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phytother Res. 2013; 27(4): 545–551, doi: 10.1002/ptr.4751, indexed in Pubmed: 22674675.
  • 43. Zern TL, Fernandez ML. Cardioprotective effects of dietary polyphenols. J Nutr. 2005; 135(10): 2291–2294, doi: 10.1093/jn/135.10.2291, indexed in Pubmed: 16177184.
  • 44. Zhang Q, Raoof M, Chen Yu, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010; 464(7285): 104–107, doi: 10.1038/nature08780, indexed in Pubmed: 20203610.
  • 45. Zoecklein B, Fugelsang K, Gump B, et al. Phenolic compounds and wine color. Production Wine Analysis. 1990: 129–168, doi: 10.1007/978-1-4615-8146-8_7.
  • 46. Zoja C, Abbate M, Remuzzi G. Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol Dial Transplant. 2015; 30(5): 706–712, doi: 10.1093/ndt/gfu261, indexed in Pubmed: 25087196.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7ccc8670-1e9e-4727-b517-c2eaaa48afb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.