PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 2 |

Tytuł artykułu

Nonlinear dynamics analysis of the human balance control subjected to physical and sensory perturbations

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Postural control after applying perturbation involves neural and muscular efforts to limit the center of mass (CoM) motion. Linear dynamical approaches may not unveil all complexities of body efforts. This study was aimed at determining two nonlinear dynamics parameters (fractal dimension (FD) and largest Lyapunov exponent (LLE)) in addition to the linear standing metrics of balance in perturbed stance. Sixteen healthy young males were subjected to sudden rotations of the standing platform. The vision and cognition during the standing were also interfered. Motion capturing was used to measure the lower limb joints and the CoM displacements. The CoM path length as a linear parameter was increased by elimination of vision (p<0.01) and adding a cognitive load (p<0.01). The CoM nonlinear metric FD was decreased due to the cognitive loads (p<0.001). The visual interference increased the FD of all joints when the task included the cognitive loads (p<0.01). The slightly positive LLE values showed weakly‑chaotic behavior of the whole body. The local joint rotations indicated higher LLEs. Results indicated weakly chaotic response of the whole body. Increase in the task difficulty by adding sensory interference had difference effects on parameters. Linear and nonlinear metrics of the perturbed stance showed that a combination of them may properly represent the body behavior.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

2

Opis fizyczny

p.168-175,fig.,ref.

Twórcy

  • Department of Biomechanics, Faculty of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran
  • Department of Biomechanics, Faculty of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran

Bibliografia

  • Abe MO, Masani K, Nozaki D, Akai  M, Nakazawa K (2010) Temporal correlations in center of body mass fluctuations during standing and walking. Hum Mov Sci 29(4): 556–566.
  • Blaszczyk JW (2016) The use of force‑plate posturography in the assessment of postural instability. Gait Posture 44: 1–6.
  • Blaszczyk JW, Beck  M, Sadowska D (2014) Assessment of postural stability in young healthy subjects based on directional features of posturographic data: vision and gender effects. Acta Neurobiol Exp (Wars) 74(4): 433–442.
  • Blaszczyk JW, Klonowski W (2001) Postural stability and fractal dynamics. Acta Neurobiol Exp (Wars) 61(2): 105–112.
  • Blaszczyk JW, Lowe DL, Hansen PD (1993) Age‑related changes in perception of support surface inclination during quiet stance. Gait Posture 1(3): 161–165.
  • Buzzi UH, Stergiou N, Kurz MJ, Hageman PA, Heidel J (2003) Nonlinear dynamics indicates aging affects variability during gait. Clin Biomech 18(5): 435–443.
  • Casteran  M, Putot A, Pfitzenmeyer F, Thomas E, Manckoundia P (2016) Analysis of the impact of a  cognitive task on the posture of elderly subjects with depression compared with healthy elderly subjects. Clin Neurophysiol 27(11): 3406–3411.
  • Chagdes JR, Rietdyk S, Haddad JM, Zelaznik HN, Raman A (2012) Nonlinear dynamics and bifurcations in postural control on rigid surfaces and rotational balance boards. Proc ASME 2012 Summer Bioeng Conf 1: 2009. Collins JJ, DeLuca CJ, Burrows A, Lipsitz LA (1995) Age‑related changes in open‑loop and closed‑loop postural control mechanisms. Exp Brain Res 104: 480–492.
  • Corbeil P, Blouin J‑S, Begin F, Nougier V, Teasdale N (2003) Perturbation of the postural control system induced by muscular fatigue. Gait Posture 18: 92–100.
  • Creath R, Kiemel T, Horak FB, Peterka R, Jeka J (2005) A unified view of quiet and perturbed stance: simultaneous co‑existing excitable modes. Neurosci Lett 377: 75–80.
  • Dingenen B, Staes FF, Janssens L (2013) A new method to analyze postural stability during a  transition task from double‑leg stance to single‑leg stance. J Biomech 46(13): 2213–2219.
  • Donker SF, Roerdink  M, Greven AJ, Beek PJ (2007) Regularity of center‑of‑pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res 181: 1–11.
  • Doyle TL, Newton RU, Burnett AF (2005) Reliability of traditional and fractal dimension measures of quiet stance center of pressure in young, healthy people. Arch Phys Med Rehabil 86: 2034–2040.
  • Duarte M, Zatsiorsky VM (2000) On the fractal properties of natural human standing. Neurosci Lett 283: 173–176.
  • Federolf P, Roos L, Nigg BM (2013) Analysis of the multi‑segmental postural movement strategies utilized in bipedal, tandem and one‑leg stance as quantified by a  principal component decomposition of marker coordinates. J Biomech 46(15): 2626–2633.
  • Fonda B, Sarabon N, Li F‑X (2014) Validity and reliability of different kinematics methods used for bike fitting. J Sports Sci 32(10): 940–946.
  • Goldberg JM, Wilson VJ, Cullen KE, Angelaki DE, Broussard DM, Buttner‑Ennever J, Fukushima K, Minor LB (2012) Vestibular system, a sixth sense. New York: Oxford University Press, New York, NY, USA. p. 284.
  • Han J, Moussavi Z, Szturm T, Goodman V (2005) Application of nonlinear dynamics to human postural control system. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, Shanghai, China. p. 1–4.
  • Hausdorff JM, Ashkenazy Y, Peng CK, Ivanov PC, Stanley HE, Goldberger AL (2001) When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Phys A Stat Mech its Appl 302(1–4): 138–147.
  • Henry SM, Fung J, Horak FB (1998) EMG responses to maintain stance during multidirectional surface translations. J Neurophysiol 80(4): 1939–1950.
  • Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support‑surface configurations. J Neurophysiol 55(6): 1369–1381.
  • Huisinga JM, Yentes JM, Filipi ML, Stergiou N (2012) Postural control strategy during standing is altered in patients with multiple sclerosis. Neurosci Lett 524(2): 124–128.
  • Ladislao L, Fioretti S (2007) Nonlinear analysis of posturographic data. Med Biol Eng Comput 45(7): 679–688.
  • Lamoth CJC, van Heuvelen MJ (2012) Sports activities are reflected in the local stability and regularity of body sway: older ice‑skaters have better postural control than inactive elderly. Gait Posture 35(3): 489–493.
  • Liu K, Wang H, Xiao J, Taha Z (2015) Analysis of human standing balance by largest Lyapunov exponent. Comput Intell Neurosci 2015: 158478.
  • Melzer I, Oddsson LI (2016) Altered characteristics of balance control in obese older adults. Obes Res Clin 10(2): 151–158.
  • Murata A, Iwase H (1998) Chaotic analysis of body sway. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, Hong Kong, China. p. 1557–1560.
  • Negahban H, Sanjari MA, Mofateh R, Parnianpour  M (2013) Nonlinear dynamical structure of sway path during standing in patients with multiple sclerosis and in healthy controls is affected by changes in sensory input and cognitive load. Neurosci Lett 553: 126–131.
  • Oba N, Sasagawa S, Yamamoto A, Nakazawa K (2015) Difference in postural control during quiet standing between young children and adults: assessment with center of mass acceleration. PLoS One 10(10): e0140235.
  • Pascolo P, Barazza F, Carniel R (2006) Considerations on the application of the chaos paradigm to describe the postural sway. Chaos Soliton Fract 27: 1339–1346.
  • Peterka RJ (2003) Simplifying the complexities of maintaining balance. IEEE Eng Med Biol Mag 22(2): 63–68.
  • Reynard F, Terrier P (2014) Role of visual input in the control of dynamic balance: variability and instability of gait in treadmill walking while blindfolded. Exp Brain Res 233(4): 1031–1040.
  • Runge CF, Shupert CL, Horak FB, Zajac FE (1999) Ankle and hip postural strategies defined by joint torques. Gait Posture 10(2): 161–170.
  • Safi K, Diabl A, Albertsen M, Hutin E, Mohammed S (2015) Non‑linear analysis of human stability during static posture. In: 2015 International Conference on Advances in Biomedical Engineering (ICABME). IEEE, Beirut, Lebanon. p. 285–288.
  • Sasaki O, Gagey PM, Ouaknine AM, Martinerie J, Le Van Quyen M, Toupet M, L’Heritier A (2001) Nonlinear analysis of orthostatic posture in patients with vertigo or balance disorders. Neurosci Res 41(2): 185–192.
  • Schmid M, Conforto S, Lopez L, D’Alessio T (2007) Cognitive load affects postural control in children. Exp Brain Res 179: 375–385.
  • Sullivan E  V, Rose J, Rohlfing T, Pfefferbaum A (2009) Postural sway reduction in aging men and women: relation to brain structure, cognitive status, and stabilizing factors. Neurobiol Aging 30: 793–807.
  • Vlutters  M, Boonstra TA, Schouten AC, Van der Kooij H (2015) Direct measurement of the intrinsic ankle stiffness during standing. J Biomech 48(7): 1258–1263.
  • Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D Nonlinear Phenom 16(3): 285–317.
  • Yamada N (1995) Chaotic swaying of the upright posture. Hum Mov Sci 14: 711–726.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7cc0ab5c-7498-4d67-a2e0-456535cbfc6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.