PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 58 | 4 |

Tytuł artykułu

Indirect inactivation of tyrosinase in its action on tyrosine

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Under aerobic conditions, tyrosinase is inactivated by dopa as a result of suicide inactivation, and, under anaerobic conditions, as a result of irreversible inactivation. However, tyrosine protects the enzyme from being inactivated by dopa under anaerobic conditions. This paper describes how under aerobic conditions the enzyme acting on tyrosine is not directly inactivated but undergoes a process of indirect suicide inactivation provoked by reaction with the o-diphenol originated from the evolution of o-dopaquinone and accumulated in the reaction medium.

Wydawca

-

Rocznik

Tom

58

Numer

4

Opis fizyczny

p.477-488,fig.,ref.

Twórcy

  • Grupo de Investigación Enzimología, Departamento de Bioquimica y Biologia Molecular-A, Facultad de Biologia, Universidad de Murcia, Espinardo, Murcia, Spain
autor
autor

Bibliografia

  • Aasa R, Deinum J, Lerch K, Reinhammar B (1978) The reaction of mercaptans with tyrosinases and hemocyanins. Biochim Biophys Acta 535: 287-298. 
  • Asimov I, Dawson CR (1950) On the reaction inactivation of tyrosinase during the aerobic oxidation of catechol, J Am Chem Soc 72: 820-828.
  • Battaini G, Monzani E, Casella L, Lonardi L, Tepper AW, Canters GW, Bubacco L (2002) Tyrosinase-catalyzed oxidation of fluorophenols. J Biol Chem 277: 44606-44612. 
  • Beltramini M, Lerch K (1982) Fluorescence properties of Neurospora tyrosinase. Biochem J 205: 173-180. 
  • Cabanes J, Garcia-Canovas F, Lozano JA, Garcia-Carmona F (1987) A kinetic study of the melanization pathway between L-tyrosine and dopachrome. Biochim Biophys Acta 923: 187-195. 
  • Casella L, Monzani E, Gulloti M, Cavagnino D, Cerina G, Santagostini L, Ugo R (1996) Functional modeling of tyrosinase. Mechanism of phenol ortho-hydroxylation by dinuclear copper complexes. Inorg Chem 35: 7516-7525.
  • Chang TS (2007) Two potent suicide substrates of mushroom tyrosinase: 7,8,4'-trihydroxyisoflavone and 5,7,8,4'-tetrahydroxyisoflavone. J Agric Food Chem 55: 2010-2015. 
  • Chang TS (2009) An updated review of tyrosinase inhibitors. Int J Mol Sci 10: 2440-2475. 
  • Chang TS, Lin MY, Lin HJ (2010) Indentifying 8-hydroxynaringenin as a suicide substrate of mushroom tyrosinase. J Cosmet Sci 61: 205-210. 
  • Chazarra S, Cabanes J, Escribano J, Garcia-Carmona F (1997) Kinetic study of the suicide inactivation of latent polyphenoloxidase from iceberg lettuce (Lactuca sativa) induced by 4-tert-butylcatechol in the presence of SDS. Biochim Biophys Acta 1339: 297-303. 
  • Decker H, Schweikardt T, Tuczek F (2006) The first crystal structure of tyrosinase: All questions answered?. Angew Chem Int Ed 45: 4546-4550. 
  • Deinum J, Lerch K, Reinhammar B (1976) An EPR study of Neurospora tyrosinase. FEBS Lett 69: 161-164. 
  • Dietler C, Lerch K (1982) In Oxidases and Related Redox Systems. King TE, Mason HS, Morrison M, eds, pp 305-317. Pergamon Press, New York.
  • Espin JC, Morales M, Varon R, Tudela J, Garcia-Canovas F (1995) Monophenolase activity of polyphenol oxidase from verdedoncella apple. J Agric Food Chem 43: 2807-2812.
  • Espin JC, Morales M, Varon R, Tudela J, Garcia-Canovas F (1997a) Monophenolase activity of polyphenol oxidase from Blanquilla pear. Phytochemistry 44: 17-22.
  • Espin JC, Ochoa M, Tudela J, Garcia-Canovas F (1997b) Monophenolase activity of strawberry polyphenol oxidase. Phytochemistry 45: 667-670.
  • Espin JC, Tudela J, Garcia-Canovas F (1997c) Monophenolase activity of polyphenol oxidase from artichoke heads (Cynara scolymus L.). Food Science Technology-Lebensmittel-Wissenschaft Technologie 30: 819-825.
  • Espin JC, Trujano MF, Tudela J, Garcia-Canovas F (1997d) Monophenolase activity of polyphenol oxidase from Haas avocado. J Agric Food Chem 45: 1091-1096.
  • Fenoll L, Peñalver MJ, Rodriguez-Lopez JN, Garcia-Ruiz PA, Garcia-Canovas F, Tudela J (2004) Deuterium isotope effect on the oxidation of monophenols and o-diphenols by tyrosinase. Biochem J 380: 643-650. 
  • Garcia-Canovas F, Garcia-Carmona F, Vera-Sanchez J, Iborra-Pastor JL, Lozano-Teruel JA (1982) The role of pH in the melanin biosynthesis pathway. J Biol Chem 257: 8738-8744. 
  • Garcia Canovas F, Tudela J, Martinez Madrid C, Varon R. Garcia Carmona F, Lozano JA (1987) Kinetic study on the suicide inactivation of tyrosinase induced by catechol. Biochim Biophys Acta 912: 417-423. 
  • Garcia-Carmona F, Garcia-Canovas F, Iborra JL, Lozano JA (1982) Kinetic study of the pathway of melanization between L-dopa and dopachrome. Biochim Biophys Acta 717: 124-131.
  • Garcia-Molina F., Muñoz JL, Varon R, Rodriguez-Lopez JN, Garcia-Canovas F, Tudela J (2007) A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase. J Agric Food Chem 55: 9739-9749. 
  • Garcia-Sevilla F, Garrido del Solo C, Duggleby RG, Garcia-Canovas F, Peyro R, Varon R (2000) Use of a window program for simulation of the progress curves of reactants and intermediates involved in enzyme-catalyzed reactions. Biosystems 54: 151-164. 
  • Gasparetti C, Faccio G, Arvas M, Buchert J, Saloheimo M, Kruus K (2010) Discovery of a new tyrosinase-like enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase. Appl Microbiol Biotechnol 86: 213-226. 
  • Ingraham LL, Corse J, Makower B (1952) Enzymatic browning of fruits. 3. Kinetics of the reaction inactivation of polyphenol oxidase. J Am Chem Soc 74: 2623-2626.
  • Ismaya WT, Rozeboom HJ, Schurink M, Boeriu CG, Wichers H, Dijkstra BW (2011) Crystallization and preliminary X-ray crystallographic analysis of tyrosinase from the mushroom Agaricus bisporus. Acta Crystallogr Sect F, Struct Biol Cryst Commun 67: 575-578. 
  • Itoh S, Fukuzumi S (2007) Monooxygenase activity of type 3 copper proteins. Acc Chem Res 40: 592-600. 
  • Jackman M, Huber M, Hajnal A, Lerch K (1992) Stabilization of the oxy form of tyrosinase by a single conservative amino acid substitution. Biochem J 282: 915-918. 
  • Jandel scientific (2006) Sigma Plot 9.0 for WindowsTM; Jandel scientific: Core Madera 2006.
  • Jolley Jr RL, Evans LH, Makino N, Mason HS (1974) Oxytyrosinase. J Biol Chem 249: 335-345. 
  • Karlin KD, Lee D-H, Obias HV, Humphreys KF (1998) Copper-dioxygen complexes: Functional models for proteins. Pure Appl Chem 70: 855-862.
  • Klabunde T, Eicken C, Sachettini JC, Krebs B (1998) Crystal structure of a plant catechol oxidase containing a dicopper center. Nat Struct Biol 5: 1084-1090. 
  • Land EJ, Ramsden CA, Riley PA (2007) The mechanism of suicide-inactivation of tyrosinase: A substrate structure investigation. Tohoku J Exp Med 212: 341-348. 
  • Land EJ, Ramsden CA, Riley PA, Stratford MR (2008) Evidence consistent with the requirement of cresolase activity for suicide inactivation of tyrosinase. Tohoku J Exp Med 216: 231-238. 
  • Lerch K (1983) Neurospora tyrosinase: structural, spectroscopic and catalytic properties. Mol Cell Biochem 52: 125-138. 
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275. 
  • Marino SM, Fogal S, Bisaglia M, Moro S, Scartabelli G, De Gioia L, Spada A, Monzani E, Casella L, Mammi S, Bubacco L (2011) Investigation of Streptomyces antibioticus tyrosinase reactivity towards chlorophenols. Arch Biochem Biophys 505: 67-74. 
  • Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible Turing catalysis. J Biol Chem 281: 8981-8990. 
  • Miller SM, Klinman JP (1985) Secondary isotope effects and structure-reactivity correlations in the dopamine β-monooxygenase reaction: Evidence for a chemical mechanism. Biochemistry 24: 2114-2127. 
  • Molina FG, Munoz JL, Varon R, Rodriguez Lopez JN, Garcia Canovas F, Tudela J (2007) An approximate analytical solution to the lag period of the monophenolase activity of tyrosinase. Int J Biochem Cell Biol 39: 238-252. 
  • Monzani E, Quinti L, Perotti A, Casella L, Gulloti M, Randaccio L, Geremia S, Nardin G, Faleschini P, Tabbi G (1998) Tyrosinase models. Synthesis, structure, catechol oxidase activity, and phenol monooxygenase activity of a dinuclear copper complex derived from a triamino pentabenzimidazole ligand. Inorg Chem 37: 553-562. 
  • Muñoz-Muñoz JL, Garcia-Molina F, Garcia-Ruiz PA, Molina-Alarcon M, Tudela J, Garcia-Canovas F, Rodriguez-Lopez JN (2008) Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism. Biochem J 416: 431-440. 
  • Munoz-Munoz JL, Garcia-Molina F, Garcia-Ruiz PA, Varon R, Tudela J, Garcia-Canovas F, Rodriguez-Lopez JN (2009) Stereospecific inactivation of tyrosinase by L-and D-ascorbic acid. Biochim Biophys Acta 1794: 244-253. 
  • Muñoz-Muñoz JL, Acosta-Motos JR, Garcia-Molina F, Varon R, Garcia-Ruiz PA, Tudela J, Garcia-Canovas F, Rodriguez-Lopez JN (2010a) Tyrosinase inactivation in its action on L-dopa. Biochim Biophys Acta 1804: 1467-1475. 
  • Munoz-Munoz JL, Garcia-Molina F, Varon R, Garcia-Ruiz PA, Tudela J, Garcia-Canovas F, Rodriguez-Lopez JN (2010b) Suicide inactivation of the diphenolase and monophenolase activities of tyrosinase. IUBMB Life 62: 539-547. 
  • Munoz-Munoz JL, Garcia-Molina F, Garcia-Ruiz PA, Varon R, Tudela J, Garcia-Canovas F, Rodríguez-Lopez JN (2010c) Some kinetic properties of deoxytyrosinase. J Mol Cat B: Enzymatic 62: 173-182.
  • Nelson JM, Dawson CR (1944) Tyrosinase. Adv Enzymol 4: 99-152.
  • Padron MP, Gonzalez AG, Lozano JA (1974) O-diphenol:oxygen-oxidoreductase from Musa cavendishii. Rev Esp Fisiol 30: 167-176. 
  • Padron MP, Lozano JA, Gonzalez AG (1975) Properties of o-diphenol:O2 oxidoreductase from Musa cavendishii. Phytochemistry 14: 1959-1963.
  • Peñalver MA, Rodriguez-Lopez JN, Garcia-Ruiz PA, Garcia-Canovas F, Tudela J (2003) Solvent deuterium isotope effect on the oxidation of o-diphenols by tyrosinase. Biochim Biophys Acta 1650: 128-135. 
  • Ramsden CA, Stratford MR, Riley PA (2009) The influence of catechol structure on the suicide-inactivation of tyrosinase. Org Biomol Chem 7: 3388-3390. 
  • Riley PA (1997) Melanin. Int J Biochem Cell Biol 29: 1235-1239. 
  • Ramsden CA, Riley PA (2010a) Mechanistic studies of tyrosinase suicide inactivation. ARKIVOC (i): 260-274.
  • Ramsden CA, Riley PA (2010b) Studies of the competing rates of catechol oxidation and suicide inactivation of tyrosinase. ARKIVOC (x): 248-254.
  • Rodriguez-Lopez JN, Tudela J, Varon R, Garcia-Carmona F, Garcia-Canovas F (1992a) Analysis of a kinetic model for melanin biosynthesis pathway. J Biol Chem 267: 3801-3810. 
  • Rodríguez-Lopez JN, Ros-Martinez JR, Varon R, Garcia-Canovas F (1992b) Calibration of a Clark-type oxygen electrode by tyrosinase catalyzed-oxidation of 4-tert-butylcatechol. Anal Biochem 202: 356-360. 
  • Rodriguez-Lopez JN, Fenoll LG, Garcia-Ruiz PA, Varon R, Tudela J, Thorneley RN, Garcia-Canovas F (2000) Stopped-flow and steady-state study of the diphenolase activity of mushroom tyrosinase. Biochemistry 39: 10497-10506. 
  • Rolff M, Schottenheim J, Decker H, Tuczek F (2011) Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem Soc Rev 40: 4077-4098. 
  • Rompel A, Fisher H, Meiwes D, Buldt-Karentzopoulos K, Dillinger R, Tuczek F, Witzel H, Krebs B (1999) Purification and spectroscopic studies on catechol oxidase from Lycopus europaeus and Populus nigra: Evidence for a dinuclear copper center of type and spectroscopic similarities to tyrosinase and hemocyanin. J Biol Inorg Chem 4: 56-63. 
  • Ros JR, Rodriguez-Lopez JN, Garcia-Canovas F (1994) Tyrosinase: kinetic analysis of the transient phase and the steady state. Biochim Biophys Acta 1204: 33-42. 
  • Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247: 1-11. 
  • Seiji M, Sasaki M, Tomita Y (1978) Nature of tyrosinase inactivation in melanosomes. Tohoku J Exp Med 125: 233-245. 
  • Sendovski M, Kanteev M, Shuster Ben-Yosef V, Adir N, Fishman A (2010) Crystallization and preliminary X-ray crystallographic analysis of a bacterial tyrosinase from Bacillus megaterium. Acta Crystallogr Sect F Struct Biol Cryst Commun 66: 1101-1103. 
  • Sendovski M, Kanteev M, Shuster Ben-Yosef V, Adir N, Fishman A (2011) First structures of an active bacterial tyrosinase reveal copper plasticity. J Mol Biol 405: 227-237. 
  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96: 2563-2606. 
  • Tai SS-K, Lin C-G, Wu M-H, Chang TS (2009) Evaluation of depigmenting activity by 8-hydroxydaidzein in mouse B16 melanoma cells and human volunteers. Int J Mol Sci 10: 4257-4266. 
  • Tomita Y, Seiji M (1977) Inactivation mechanism of tyrosinase in mouse melanoma. J Dermatol 4: 245-249. 
  • Tomita Y, Hariu A, Mizuno C, Seiji M (1980) Inactivation of tyrosinase by dopa. J Invest Dermatol 75: 379-382. 
  • Tudela J, Garcia Canovas F, Varon R, Garcia Carmona F, Galvez J, Lozano JA (1987) Transient-phase kinetics of enzyme inactivation induced by suicide substrates. Biochim Biophys Acta 912: 408-416. 
  • Tyeklar Z, Karlin KD (1989) Copper-dioxygen complexes: A bioionargic challenge. Acc Chem Res 22: 241-248.
  • Waley S (1980) Kinetics of suicide substrates. Biochem J 185: 771-773. 
  • Waley SG (1985) Kinetics of suicide substrates. Practical procedures for determining parameters. Biochem J 227: 843-849. 

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7bae5e7b-7e8e-4214-a981-c23a5917cd32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.