PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 2 |

Tytuł artykułu

Effect of neutralizing substances on zinc-contaminated soil on the yield and macronutrient content in yellow lupine (Lupinus luteus L.)

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Some trace elements, for example zinc, play both a positive and a negative role in plant life, which requires their content in soil. If soil is excessively contaminated with zinc, an attempt should be made to reduce the negative effect of this element on plants and other living organisms. For this reason, a study was undertaken to determine whether it was possible to alleviate the effect of soil zinc contamination (0, 150, 300 and 600 mg Zn kg-1 of soil) on the yield and macronutrient content of yellow lupine (Lupinus luteus L.). Compost (3%), bentonite (2%) and zeolite (2% relative to soil mass) were used to reduce the effect of soil zinc contamination. Macro- and micronutrients were applied to the soil in the same amounts in all pots: 30 mg N, 30 mg P, 100 mg K, 50 mg Mg, 0.33 mg B, 5 mg Mn and 5 mg Mo per kg soil. Yellow lupine was harvested in the flowering phase and plant material samples were collected for laboratory tests. The induced soil zinc contamination reduced yellow lupine growth and development because a dose of 300 mg Zn kg-1 soil caused plant seedlings to wither. Compost and bentonite reduced the negative influence of soil zinc contamination on yellow lupine yield, especially on aerial parts. The most demonstrable effect of zinc on the macronutrient content of lupine plants was recorded for magnesium and calcium, whose content increased compared to the control in both the aerial parts and roots of yellow lupine. Among the neutralizing substances, the effect of zeolite on the phosphorus, magnesium and calcium content and bentonite on the sodium content in the plants was the most beneficial.

Wydawca

-

Rocznik

Tom

20

Numer

2

Opis fizyczny

p.503-512,fig.,ref.

Twórcy

  • Chair of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Plac Lodzki 4, 10-727 Olsztyn, Poland
  • Chair of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland

Bibliografia

  • Ciećko Z., Kalembasa S., Wyszkowski M., Rolka E. 2004. Effect of soil contamination by cadmium on potassium uptake by plants. Pol. J. Environ. Stud., 13(3): 333-337.
  • Ciećko Z., Kalembasa S., Wyszkowski M., Rolka E. 2005. The magnesium content in plants on soil contaminated with cadmium. Pol. J. Environ. Stud., 14(3): 365-370.
  • D’Emilio M., Caggiano R., Macchiato M., Ragosta M., Sabia S. 2012. Soil heavy metal contamination in an industrial area: analysis of the data collected during a decade. Environ. Monit. Assess., 185(7): 5951-5964. DOI: 10.1007/s10661-012-2997-y
  • Faiz Y., Tufail M., Tayyeb Javed M., Chaudhry M., Naila-Sidd ique M. 2009. Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchem. J., 92: 186-192. DOI: 10.1016/j.microc.2009.03.009
  • Feng N., Dagan R., Bitton G. 2007. Toxicological approach for assessing the heavy metal binding capacity of soils. Soil Sediment Contam., 16: 451-458. DOI: 10.1080/15320380701490226
  • Gospodare k J., Nadgórska-Socha A. 2010. Comparison of the effect of liming and magnesium treatment of heavy metal contaminated soil on the content of magnesium, calcium and iron in broad beans (Vicia fabal L. ssp. Maior). J. Elem., 15(1): 81-88. DOI: 10.5601/jelem.2010.15.1.81-88
  • Grze gorczyk S., Alber ski J., Olsze wska M. 2013. Accumulation of potassium, calcium and magnesium by selected species of grassland legumes and herbs. J. Elem., 18(1): 69-78. DOI:10.5601/jelem.2013.18.1.05
  • Guala S., Vega Flora A., Covelo E. F. 2013. Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations. Environ. Monit. Assess., 185: 73-80. DOI: 10.1007/s10661-012-2534-z
  • Jacquat O., Voegelin A., Kre tzschmar R. 2009. Soil properties controlling Zn speciation and fractionation in contaminated soils. Geochim. Cosmochim. Acta, 73: 5256-5272. DOI: 10.1016/j.gca.2009.05.066
  • Kucharski J. Wieczore k K., Wyszkowska J. 2011. Changes in the enzymatic activity in sandy loam soil exposed to zinc pressure. J. Elem., 16(4): 577-589. DOI: 10.5601/jelem.2011.16.4.07
  • Lityński T., Jurkowska H., Gorlach E. 1976. Chemical and agriculture analysis. PWN, Warszawa, 129-132. (in Polish)
  • Liu Q., Liu Y., Zhang M. 2012. Mercury and cadmium contamination in traffic soil of Beijing, China. Bull. Environ. Contam. Toxicol., 88: 154-157. DOI: 10.1007/s00128-011-0441-6
  • Massas I., Kalivas D., Ehaliotis C., Gasparatos D. 2013. Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes. Environ. Monit. Assess., 185(8): 6751-6766. DOI: 10.1007/s10661-013-3062-1
  • Modrze wska B., Wyszkowski M. 2014. Trace metals content in soils along the State Road 51 (northeastern Poland). Environ. Monit. Assess., 186(4): 2589-2597. DOI: 10.1007/s10661-013-3562-z
  • Ostrowska A., Gawl iński S., Szczubiałka Z. 1991. Methods for analysis and evaluation of soil and plant properties. IOŚ, Warszawa, 334. (in Polish)
  • Page V., Weisskopf L., Feler U. 2006. Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytologist., 171: 329-341. DOI: 10.1111/j.1469-8137.2006.01756.x
  • Pérez -Novo C., Ber múdez -Couso A., López -Per iago E., Fer nández -Calviño D., Arias-Estévez M. 2011. Zinc adsorption in acid soils influence of phosphate. Geoderma, 162: 358-364. DOI: 10.1016/j.geoderma.2011.03.008
  • Ruiz E., Rodr iguez L., Alonso-Azcarate J., Rincon J. 2009. Phytoextraction of metal polluted soils around a Pb-Zn mine by crop plants. Internat. J. Phytorem., 11(4): 360-384. DOI:10.1080/15226510802565568
  • Sagi Y., Yigit S. A. 2012. Heavy metals in Yeniçağa Lake and its potential sources: soil, water, sediment, and plankton. Environ. Monit. Assess., 184: 1379-1389. DOI: 10.1007/s10661- 011-2048-0
  • Sipos P., Németh T., Kovács Kis V., Mohai I. 2008. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere, 73: 461-469. DOI: 10.1016/j.chemosphere.2008.06.046
  • Sivitskaya V., Wyszkowski M. 2013. Changes in the content of some macroelements in maize (Zea mays L.) under effect of fuel oil after application of different substances to soil. J. Elem., 18(4): 705-714. DOI: 10.5601/jelem.2013.18.4.317
  • StatSoft, Inc. 2010. STATISTICA data analysis software system, version 9.1. www.statsoft.com.
  • Takáč P., Szabová T., Kozáková Ľ., Benková M. 2009. Heavy metals and their bioavailability from soils in the long-term polluted Central Spiš region of SR. Plant Soil Environ., 55(4): 167-172.
  • Trakal L., Komáre k M., Száková J., Tlustoš P., Tej necký V., Drábe k O. 2012. Sorption behavior of Cd, Cu, Pb and Zn and their inteactions in phytoremediated soil. Internat. J. Phytoremed., 14: 806-819. DOI: 10.1080/15226514.2011.628714
  • US -EPA Method 3051 (1994). Microwave assisted acid digestion of sediment, sludges, soils and oils.
  • White P. J., Brown P. H. 2010. Plant nutrition for sustainable development and global health. Ann. Bot., 105: 1073-1080. DOI: 10.1093/aob/mcq085
  • Wyszkowska J., Borowik A., Kucharski M., Kucharski J. 2013. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem., 18(4): 769-796. DOI: 10.5601/jelem.2013.18.4.455
  • Wyszkowski M., Ziółkowska A. 2009a. Effect of compost, bentonite and calcium oxide on content of some macroelements in plants from soil contaminated by petrol and diesel oil. J. Elem., 14(2): 405-418. DOI: 10.5601/jelem.2009.14.2.21
  • Wyszkowski M., Ziółkowska A. 2009b. Role of compost, bentonite and calcium oxide in restricting the effect of soil contamination with petrol and diesel oil on plants. Chemosphere, 74: 860-865. DOI: 10.1016/j.chemosphere.2008.10.035
  • Zhang X. Y., Lin F. F., Wong Mike T. F., Feng X. L., Wang K. 2009. Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environ. Monit. Assess., 154: 439-449. DOI: 10.1007/s10661-008-0410-7

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7b8ac3a5-6270-4c8b-8cdb-e65ee088ceeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.