PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 4 |

Tytuł artykułu

Transport of nitrogen compounds through subsoils in agricultural areas: column tests

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil parameters in agricultural areas play an important role in the migration of nitrogen compounds to groundwater. Nitrogen loss from subsoil depends on soil permeability, organic content, and soil saturation. Our study evaluates the parameters controlling the migration of nitrogen compounds through selected fine and sandy soils that may affect the quality of groundwater in agricultural areas. The results of this study indicate that denitrification processes that substantially affect ammonium (NH₄⁺) and nitrate (NO₃⁻) concentrations take place in fine soils. These processes decrease the flow of nitrogen into groundwater and are indicated by the production of a gashouse phase, a decrease in hydraulic conductivity, and a nitrogen compound concentration in the filtrate that is lower than the maximum concentration. Column tests have shown that the dominant transport process for silt loam and sand samples was advection, and the dominant transport process for loam was dispersion. Moreover, the velocities of NH₄⁺ ion transport were lower than the velocities of water flow by approximately seven and five times for loam and sand, respectively. The estimated values of the retardation factor and dynamic sorption capacity for NO₃⁻ were lower than those for NH₄⁺ ions. Finally, groundwater located below the silt loam and loam soil layers can effectively be protected against the infiltration of nitrogen compounds from agricultural sources.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.1505-1514,fig.,ref.

Twórcy

autor
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • 1. ALLRED B.J. Laboratory evaluation of zero valent iron and sulfur-modified iron for agricultural drainage water treatment. Ground Water Monit. Remediat. 32 (2), 81, 2012.
  • 2. WICK K., HEUMESSER K., SCHMID E. Groundwater nitrate contamination: Factors and indicators. J. Environ. Manage. 155, 178, 2012.
  • 3. Yang X.L., Li T.K., Hua K.K., Zhang Y.L. Investigation of first flushes in a small rural-agricultural catchment. Pol. J. Environ. Stud. 24 (1), 381, 2015.
  • 4. MENG H., XU M., LÜ J., HE X., LI J., SHI X., PENG C., WANG B., ZHANG H. Soil pH dynamics and nitrogen transformation under long-term chemical fertilization in four typical Chinese croplands. J. Integr. Agr. 12 (11), 2092, 2013.
  • 5. CAMARGO J., ALONSO Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831, 2006.
  • 6. MORADZADEH M., MOAZED H., SAYYAD G., KHALEDIAN M. Transport of nitrate and ammonium ions in a sandy loam soil treated with potassium zeolite – Evaluating equilibrium and non-equilibrium equations. Acta Ecol. Sin. 34 (6), 342, 2014.
  • 7. MATYSIK M., ABSALON D., RUMAN M. Surface water quality in relation to land cover in agricultural catchments (Liswarta river basin case study). Pol. J. Environ. Stud. 24 (1), 175, 2015.
  • 8. NITRATE DIRECTIVE 91/676/EEC of December 12, 1991 on water protection from pollution caused by nitrate from agricultural sources.
  • 9. IBENDAHL G., FLEMING R.A. Controlling aquifer nitrogen levels when fertilizing crops: a study of groundwater contamination and denitrification. Ecol. Model. 205, 507, 2007.
  • 10. JAHANGIR M.M.R., KHALIL M.I., JOHNSTON P., CARDENAS L.M., HATCH D.J., BUTLER M., BARRETT M., O’FLAHERTY V., RICHARDS K.G. Denitrification potential in subsoils: A mechanism to reduce nitrate leaching to groundwater. Agricult. Ecosys. Environ. 147, 13, 2012.
  • 11. JEGO G., SANCHEZ-PEREZ J.M., JUSTES E. Predicting soil water and mineral nitrogen contents with the STICS model for estimation nitrate leaching under agricultural fields. Agricult. Water. Manag. 107, 54, 2012.
  • 12. CHEN Z., WANG C., GSCHWENDTNER S., WILLIBALD G., UNTEREGELSBACHER S., LU H., KOLAR A., SCHLOTER M., BUTTERBACH-BAHL K., DANNENMANN M. Relationships between denitrification gene expression, dissimilatory nitrate reduction to ammonium and nitrous oxide and dinitrogen production in montane grassland soils. Soil Biol. Biochem. 87, 67, 2015.
  • 13. BERNARD-JANNIN L., SUN X., TEISSIER S., SAUVAGE S., SÁNCHEZ-PÉREZ J.-M. Spatio-temporal analysis of factors controlling nitrate dynamics and potential denitrification hot spots and hot moments in groundwater of an alluvial floodplain. Ecol. Eng. (in press) doi:10.1016/j. ecoleng.2015.12.031, 2015.
  • 14. POCH-MASSEGÚ R., JIMÉNEZ-MARTÍNEZ J., WALLIS K.J., RAMÍREZ D.E. CARTAGENA F., CANDELA L. Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions. Agric. Water Manage. 134, 1, 2014.
  • 15. CHEN S., WU W., HU K., LI W. The effects of land use change and irrigation water resource on nitrate contamination in shallow groundwater at county scale. Ecol. Complex. 7, 131, 2010.
  • 16. CAVALLI D., CONSOLATI G., MARINO P., BECHINI L. Measurement and simulation of soluble, exchangeable, and non-exchangeable ammonium in three soils. Geoderma 259–260, 116, 2015.
  • 17. LEE M.J., HWANG S.I., RO H.M. Interpreting the effect of soil texture on transport and removal of nitrate-N in saline coastal tidal flats under steady-state flow condition. Cont. Shelf Res. 84, 35, 2014.
  • 18. YONG R.N., MULLIGAN C.N., FUKUE M. Sustainable practices in geoenvironmental engineering. CRC Press, 2015.
  • 19. MILLS H.J., HUNTER E., HUMPHYS M., KERKHOF L., MCGUINNESS L., HUETTEL M., KOSTKA J.E. Characterization of nitrifying, denitrifying and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Appl. Environ. Microbiol. 74, 4440, 2008.
  • 20. CUI Z., WELTY C., MAXWELL R.M. Modeling nitrogen transport and transformation in aquifers using a particletracking approach. Comput. Geosci. 70, 1, 2014.
  • 21. BEDNAREK A., SZKLAREK S., ZALEWSKI M. Nitrogen pollution removal from areas of intensive farmingcomparison of various denitrification biotechnologies. Ecohydrol. Hydrobiol. 14 (2), 132, 2014.
  • 22. DAVIES D.B. The nitrate issue in England and Wales. Soil Use Manage. 16, 142, 2000.
  • 23. BURGIN A.J., HAMILTON S.K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5, 89, 2007.
  • 24. US EPA/530/SW-87/006-F. Batch - type procedures for estimating soil adsorption of chemicals. US EPA (United States Environmental Protection Agency), Washington, DC. 1992.
  • 25. ASTM D5084 – 00. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. American Society for Testing and Materials, Pennsylvania. 2001.
  • 26. FRONCZYK J., GARBULEWSKI K. Selection of material suitable for permeable reactive barriers in vicinity of landfills. Ann. Warsaw Univ. of Life. Sci. - SGGW, Land Reclam. 41, 3, 2009.
  • 27. DANIEL D.E. State-of-the-art: laboratory hydraulic conductivity tests for saturated soils. In: DANIEL D.E., TRAUTWEIN S.J. (ed) Hydraulic conductivity and waste contaminant transport in soil ASTM STP 1142, Philadelphia, PA, 30, 1994.
  • 28. TORIDE N., LEIJ F.J., VAN GENUCHTEN M.T. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.1. Research Report No. 137. Riverside, Cal.: USDA-ARS U.S. Salinity Laboratory. 1999.
  • 29. U.S. DEPARTMENT of AGRICULTURE. Soil Conservation Service. Soil Survey Staff. Soil Survey Manual. U.S. Department of Agriculture. Agricultural Handbook No. 18. Washington, DC. 1951.
  • 30. Eurocode 7. Geotechnical investigation and testing - Identification and classification of soil - Part 1: Identification and description. ISO 14688-1, 2002.
  • 31. WANG W.X., WANG X., YANG L., WU Z., XIA S., ZHAO J. Cr(VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with assistance of microwave. J. Environ. Sci. 25 (9), 1726, 2013.
  • 32. HO Y.S., MCKAY G. Pseudo-second order model for sorption processes, Process Biochem. 34, 451, 1999.
  • 33. ZHANG Y.Z., HUANG S.H., WAN D.J., HUANG Y.X., ZHOU W.J., ZOU Y.B. Fixed ammonium content and maximum capacity of ammonium fixation in major types of tillage soils in Hunan province, China. Agr. Sci. China 6 (4), 466, 2007.
  • 34. SAID-PULLICINO D., CUCU M.A., SODANO M., BIRK J.J., GLASER B., CELI L. Nitrogen immobilization in paddy soils as affected by redox conditions and rice straw incorporation. Geoderma 228–229, 44, 2014.
  • 35. CHENG J., ZHANG H., ZHANG Y., CHEN Y., WANG B. Characteristics of preferential flow paths and their impact on nitrate nitrogen transport on agricultural land. Pol. J. Environ. Stud. 23 (6), 1959, 2014.
  • 36. MON J., FLURY M., HARSH J. B. Sorption of four triarylmethane dyes in a sandy soil determined by batch and column experiments. Geoderma. 133, 217, 2006.
  • 37. FIORI A., BECKER M.W. Power law breakthrough curve tailing in a fracture: The role of advection. J. Hydrol. 525, 706, 2015.
  • 38. DELGADO J.M.P.Q. Longitudinal and transverse dispersion in porous media. T. I. Chem. Eng.-Lond. Part A 85 (A9), 1245, 2007.
  • 39. FREEZE R.A., CHERRY J.A. Groundwater. Prentice-Hall, Englewood Cliffs, NJ. 1979.
  • 40. FRONCZYK J., GARBULEWSKI K. Evaluation of zeolitesand mixtures as reactive materials protecting groundwater at waste disposal sites. J. Environ. Sci. China 25 (9), 1764, 2013.
  • 41. NGUYEN T.C., LOGANATHAN P., NGUYEN T.V., VIGNESWARAN S., KANDASAMY J. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem. Eng. J. 270, 393, 2015.
  • 42. SYSWERDA S.P., BASSO B., HAMILTON S.K., TAUSIG J.B., ROBERTSON G.P. Long-term nitrate loss along an agricultural intensity gradient in the Upper Midwest USA. Agric. Ecosyst. Environ. 149, 10, 2012

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7a58e4d5-9766-4d82-a77e-1b3d023d5786
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.