PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 02 |

Tytuł artykułu

Silicon nutrition potentiates the antioxidant metabolism of rice plants under iron toxicity

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Iron toxicity reduces growth of rice plants in acidic lowlands. Silicon nutrition may alleviate many stresses including heavy metal toxicity in plants. In the present study, the ameliorating effects of silicon nutrition on rice (Oryza sativa L.) plants under toxic Fe levels were investigated. Plants were cultivated in greenhouse in hydroponics under different Fe treatments including 10, 50, 100, and 250 mg L⁻¹ as Fe-EDTA and silicon nutrition including 0 and 1.5 mM sodium silicate. Iron toxicity imposed significant reduction in plant fresh weight, tiller, and leaf number. The activity of catalase, cell wall, and soluble peroxidases, and polyphenol oxidase in shoots decreased due to moderate Fe toxicity (50 and 100 mg L⁻¹), but increased at greater Fe concentration. Ascorbate peroxidase activity increased in both roots and shoots of Fe-stressed plants. Iron toxicity led to increased tissue hydrogen peroxide and lipid peroxidation. Silicon nutrition improved plant growth under all Fe treatments and alleviated Fe toxicity symptoms, probably due to lower Fe concentration of Si-treated plants. Silicon application could improve the activity of antioxidant enzymes such as catalase, ascorbate peroxidase, and soluble peroxidase under moderate Fe toxicity, which resulted in greater hydrogen peroxide detoxification and declined lipid peroxidation. Thus, silicon nutrition could ameliorate harmful effects of Fe toxicity possibly through reduction of plant Fe concentration and improvement of antioxidant enzyme activity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

02

Opis fizyczny

p.493-502,fig.,ref.

Twórcy

  • Department of Biology, Faculty of Science, Golestan University, PO Box: 155, Gorgan, 49138-15759, Iran
  • Department of Biology, Faculty of Science, Golestan University, PO Box: 155, Gorgan, 49138-15759, Iran
  • Department of Biology, Faculty of Science, Golestan University, PO Box: 155, Gorgan, 49138-15759, Iran

Bibliografia

  • Amaya I, Botella MA, Calle M, Medina MI, Heredia A, Bressan RA, Hasegawa PM, Quesada MA, Valpuesta V (1999) Improved germination under osmotic stress or tobacco plants overexpressing a cell wall peroxidase. FEBS Lett 457:80–84. doi:10.1016/S0014-5793(99)01011-X.
  • Ashraf MY, Azmi AR, Khan AH, Ala SA (1994) Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat (Triticum aestivum L.) genotypes under soil water deficits. Acta Physiol Plant 16:185–191.
  • Audebert A (2006) Iron partitioning as a mechanism for iron toxicity tolerance in lowland rice. In: Audebert A, Narteh LT, Kiepe P, Milar D, Beks B (ed) Iron toxicity in rice-based system in West Africa. West Africa Rice Development Association (WARDA), pp 34–46.
  • Becana M, Moran JF, Iturbe-Ormaetxe L (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147.
  • Becker M, Asch F (2005) Iron toxicity in rice-condition and management concepts. J Plant Nutr Soil Sci 168:558–573. doi:10.1002/jpln.200520504.
  • Currie HA, Perry C (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389. doi:10.1093/aob/mcm247.
  • Da Cunha KPV, Do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197:323–330. doi:10.1007/s11270-008-9814-9.
  • Da Silveira VC, De Oliveira AP, Sperotto RA, Espinodola LS, Amaral L, Dias JF, Da Cunha JB, Fett JP (2007) Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Braz J Plant Physiol 19:127–139. doi:10.1590/S1677-04202007000200005.
  • Doncheva SN, Poschenrieder C, Stoyanova Z, Georgieva K, Velichkova M, Barcel J (2009) Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ Exp Bot 65:189–197. doi:10.1016/j.envexpbot.2008.11.006.
  • Dorlodot SD, Lutts S, Bertin P (2005) Effects of iron toxicity on the growth and mineral composition of an interspecific rice. J Plant Nutr 28:1–20. doi:10.1081/PLN-200042144.
  • Ekmekci Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611. doi:10.1016/j.jplph.2007.01.017.
  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17 (Review).
  • Escobar MA, Shilling A (2008) Characterization of polyphenol oxidase from walnut. J Am Hort Sci 133:852–858.
  • Fageria NK, Santos AB, Barbosa Filho MP, Guimaraes CM (2008) Iron toxicity in lowland rice. J Plant Nutr 3:1676–1697. doi:10.1080/01904160802244902.
  • Farshidi M, Abdolzadeh A, Sadeghipour HR (2012) Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiol Plant 34:1779–1788. doi:10.1007/s11738-012-0975-1.
  • Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979. doi:10.1111/j.1365-3040.2006.01572.x.
  • Gunes A, Inal A, Bagci EG, Coban S, Pilbeam DJ (2007) Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biol Plant 51:571–574.
  • Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L. plants. J Soil Sci Plant Nutr 56:244–253. doi:10.1111/j.1747-0765.2009.00443.x.
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1.
  • Hertwig B, Steb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553.
  • Imlay J (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. doi:10.1146/annurev.micro.57.030502.090938.
  • Jana S, Choudhuri MA (1982) Glycolate metabolism of five submerged aquatic angiosperms during aging. Aquat Bot 12:345–354. doi:10.1016/0304-3770(82)90026-2.
  • Kampfenkel K, Montagu V (1995) Effect of iron excess on Nicotiana plumbaginifolia plants (implications to oxidative stress). Plant Physiol 107: 725–735. http://dx.doi.org/10.1104/pp.107.3.725.
  • Lavid N, Schwrtz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of waterlily (Nymphaeaceae). Planta 212:323–331.
  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428. doi:10.1016/j.envpol.2006.06.008.
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids; pigments of photosynthetic membranes. Method Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1.
  • Liu X, Huang B (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping. Crop Sci 40:503–510. doi:10.2135/cropsci2000.402503x.
  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18. doi:10.1080/00380768.2004.10408447.
  • Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T, Yano M (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136:3284–3289. doi:10.1104/pp.104.047365.
  • Maksimović JD, Mojović M, Maksimović V, Römheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63(7):2411–2420. doi:10.1093/jxb/err359.
  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, New York.
  • Mehraban P, Abdolzadeh A, Sadeghipour HR (2008) Iron toxicity in rice (Oryza sativa L.), under different potassium nutrition. Int J Bot 7(3):251–259.
  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ Exp Bot 56:54–62. doi:10.1016/j.envexpbot.2005.01.002.
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880
  • Neumann D, Zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692. doi:10.1016/S0031-9422(00)00472-6.
  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev Camb Philos Soc 58:179–207. doi:10.1111/j.1469-185X.1983.tb00385.x.
  • Sahrawat KL (2004) Iron toxicity in wetland rice and the role of other nutrients. J Plant Nutr 27:1471–1504. doi:10.1081/PLN200025869.
  • Shi XH, Zhang CC, Wang H (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60. doi:10.1007/s11104-004-3920-2.
  • Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. J Plant Growth Regul 61:45–52. doi:10.1007/s10725-010-9447-z.
  • Sinha S, Saxena R (2006) Effect of lipid peroxidation and enzymatic and non-enzymatic antioxidation and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere 62:1340–1350. doi:10.1016/j.chemosphere.2005.07.030.
  • Song AL, Li ZJ, Zhang J, Xue GF, Fan FL, Liang YC (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172:74–83. doi:10.1016/j.jhazmat.2009.06.143.
  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20:181–189. doi:10.1016/j.jtemb.2005.12.004.
  • Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110(2):433–443. doi:10.1093/aob/mcs039.
  • Vaughn KC, Duke SO (1984) Function of polyphenol oxidase in higher plants. Physiol Plant 60:106–112. doi:10.1111/j.1399-3054.1984.tb04258.x.
  • Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Ann Rev Plant Physiol 49:585–609. doi:10.1146/annurev.arplant.49.1.585.
  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium up take in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565. doi:10.1046/j.1365-3040.1999.00418.x.
  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. International Rice Research Institute, Los Baños (Philippines).
  • You-Qiang F, Hong S, Dao-Ming W, Kun-Zheng C (2012) Silicon-mediated amelioration of Fe²⁺ toxicity in rice (Oryza sativa L.) roots. Pedosphere 22(6):795–802. doi:10.1016/S1002-0160(12)60065-4.
  • Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307. doi:10.1016/j.envexpbot.2007.10.024.
  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533. doi:10.1016/j.plantsci.2004.04.020.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-797fa0ae-f6da-4491-a2b0-6e7d4dafd10d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.