PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 18 | 1 |

Tytuł artykułu

A novel food preference in the greater short-nosed fruit bat, Cynopterus sphinx: mother-pup interaction a strategy for learning

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The greater short-nosed fruit bat Cynopterus sphinx relies on the diverse food resources available in its habitat, with individuals identifying and discriminating between food sources using their sense of smell, in relation to volatile compounds released from fruit, flowers and leaves. The work detailed in this article tested whether pups learn about novel food from interactions with their mothers during foraging and develop preferences. Mother-pup pairs or pups alone were trained during postnatal days (PND) 46–50 using Mangifera indica as a novel fruit. They were then tested during PND 61–65 for food preferences in relation to a known fruit (Achras sapota) and the novel fruit (M. indica). When the trained pups and untrained pups were tested for food preferences independently, those trained with the mother were found to exhibit significantly more marked preferences for the novel fruit as compared with either the pups trained without their mothers or the untrained pups. They made a greater number of feeding attempts and bouts in respect of the novel fruit. However, pups trained without their mothers and untrained pups also both showed a response to the novel fruit during the later period of testing. The results suggest that mother-pup interactions during the early foraging period may provide an opportunity for C. sphinx pups to learn about novel food sources thanks to their mother. Later they may learn independently on the basis of experience from mother's milk and/or social interaction with conspecifics.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

1

Opis fizyczny

p.193-198,fig.,ref.

Twórcy

autor
  • Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
  • Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
autor
  • Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
autor
  • Department of Animal Behaviour and Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
autor
  • Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India

Bibliografia

  • 1. Acharya, K. K. , A. Roy , and A. Krishna . 1998. Relative role of olfactory cues and certain non-olfactory factors in foraging of fruit-eating bats. Behavioural Processes, 44: 59–64. Google Scholar
  • 2. Bhat, H. R. 1994. Observations on the food and feeding behavior of Cynopterus sphinx Vahl (Chiroptera, Pteropodidae) at pune, India. Mammalia, 58: 363–370. Google Scholar
  • 3. Bloss, J. , T. E. Acree , J. M. Bloss , W. R. Hood , and T. H. Kunz . 2002. Potential use of chemical cues for colony-mate recognition in the big brown bat, Eptesicus fuscus. Journal of Chemical Ecology, 28: 819–834. Google Scholar
  • 4. Bouchard, S. 2001. Sex discrimination and roostmate recognition by olfactory cues in the African bats, Mops condylurus and Chaerephon pumilus (Chiroptera: Molossidae). Journal of Zoology (London), 254: 109–117. Google Scholar
  • 5. Brumm, H. , and I. Teschke . 2012. Juvenile Galapagos pelicans increase their foraging success by copying adult behavior. PLoS ONE, 7: e51881. Google Scholar
  • 6. Carter, G. G. , J. M. Ratcliffe , and B. G. Galef . 2010. Flower bats (Glossophaga soricina) and fruit bats (Carollia perspicillata) rely on spatial cues over shapes and scents when relocating food. PLoS ONE, 5: e10808. Google Scholar
  • 7. Chiu, C. , P. V. Reddy , W. Xian , P. S. Krishnaprasad , and C. F. Moss . 2010. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus. The Journal of Experimental Biology, 213: 3348–3356. Google Scholar
  • 8. Davis, J. M. , and J. A. Stamps . 2004. The effect of natal experience on habitat preference. Trends in Ecology and Evolution, 19: 411–416. Google Scholar
  • 9. Elangovan, V. , E. Y. S. Priya , H. Raghuram , and G. Marimuthu . 2003. Postnatal development in the indian shortnosed fruit bat Cynopterus sphinx: growth rate and age estimation. Acta Chiropterologica, 5: 107–116. Google Scholar
  • 10. Elangovan, V. , E. Y. S. Priya , and G. Marimuthu . 2006. Olfac tory discrimination ability of the short-nosed fruit bat Cynopterus sphinx. Acta Chiropterologica, 8: 247–253. Google Scholar
  • 11. Elangovan, V. , E. Y. S. Priya , H. Raghuram , and G. Marimuthu . 2007. Wing morphology and flight development in the short-nosed fruit bat Cynopterus sphinx. Zoology, 110: 189–196. Google Scholar
  • 12. Fleming, T. H. , and P. Eby . 2003. Ecology of bat migration. Pp. 156–208, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, 798 pp. Google Scholar
  • 13. Ganesh, A. , W. Bogdanowicz , M. Haupt , G. Marimuthu , and K. Emmanuvel Rajan . 2010. Role of olfactory bulb serotonin in olfactory learning in the Indian short-nosed fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae). Brain Research, 1352: 108–117. Google Scholar
  • 14. Ganesh, A. , W. Bogdanowicz , K. Balamurugan , D. Raguvarman , and K. Emmanuvel Rajan . 2012. Egr-1 antisense oligodeoxynucleotide administration into the olfactory bulb impairs olfactory learning in the greater shortnosed fruit bat Cynopterus sphinx. Brain Research, 1471: 33–45. Google Scholar
  • 15. Gopukumar, N. , P. T. Nathan , P. S. Doss , A. Prakash , K. Emmanuel , J. Balasingh , G. Marimuthu , and T. H. Kunz . 2003. Early ontogeny of foraging behaviour in the shortnosed fruit bat Cynopterus sphinx (Megachiroptera): preliminary results. Mammalia, 67: 139–145. Google Scholar
  • 16. Hausner, H. , M. Philipsen , H. S. Thomas , M. A. Petersen , and W. L. P. Bredie . 2009. Characterization of the volatile composition and variations between infant formulas and mother's milk. Chemosensory Perception, 2: 79–93. Google Scholar
  • 17. Hodgkison, R. , E. M. Ayasse , K. V. Kalko , C. Häberlein , S. Schulz , W. A. Mustapha , A. Zubaid , and T. H. Kunz . 2007. The chemical ecology of fruit bat foraging behaviour in relation to the fruit odours of two species of Palaeotropical bat-dispersed figs (Ficus hispida and Ficus scortechinii). Journal of Chemical Ecology, 33: 2097–2110. Google Scholar
  • 18. Jones, P. L. , M. J. Ryan , V. Flores , and R. A. Page . 2013. When to approach novel prey cues? Social learning strategies in frog-eating bats. Proceedings of the Royal Society, 280B: 20132330. Google Scholar
  • 19. Korine, C. , and E. K. V. Kalko . 2005. Fruit detection and discrimination by small fruit-eating bats (Phyllostomidae): echo location call design and olfaction. Behavioral Ecology and Sociobiology, 59: 12–23. Google Scholar
  • 20. Laska, M. 1990a. Olfactory discrimination ability in short-tailed bat, Carollia perspicillata (Chiroptera: Phyllostomidae). Journal of Chemical Ecology, 16: 3291–3299. Google Scholar
  • 21. Laska, M. 1990b. Olfactory sensitivity to food odor components in the short-tailed fruit bat, Carollia perspicillata (Phyllostomidae, Chiroptera). Journal of Comparative Phys iology, 166A: 395–399. Google Scholar
  • 22. Luft, S. , E. Curio , and B. Tacud . 2003. The use of olfaction in the foraging behaviour of the golden-mantled flying fox, Pteropus pumilus, and the greater musky fruit bat, Ptenochirus jagori (Megachiroptera: Pteropodidae). Natur wissenschaften, 90: 84–87. Google Scholar
  • 23. Mennella, J. A. , C. P. Jagnow , and G. K. Beauchamp . 2001. Prenatal and postnatal flavor learning by human infants. Pediatrics, 107: E88. Google Scholar
  • 24. Moriceau, S. , and R. M. Sullivan . 2004. Unique neural circuitry for neonatal olfactory learning. The Journal of Neuroscience, 24: 1182–1189. Google Scholar
  • 25. Oldfield, A. C. , C. R. Tidemann , and A. R. Robinson . 1993. Olfactory discrimination in the Australian flying-foxes, Pteropus poliocephalus and P. scapulatus (Chiroptera: Pteropodidae). Bat Research News, 34: 33. Google Scholar
  • 26. O'Mara, M. T. , D. K. N. Dechmann , and R. A. Page . 2014. Frugivorous bats evaluate the quality of social information when choosing novel foods. Behavioral Ecology, 25: 1233–1239. Google Scholar
  • 27. Page, R. A. , and M. J. Ryan . 2006. Social transmission of novel foraging behavior in bats: frog calls and their referents. Current Biology, 16: 1201–1205. Google Scholar
  • 28. Previde, E. P. , and M. D. Poli . 1994. Mother-pup transmission of a feeding technique in the golden hamster (Mesocricetus auratus). Pp. 125–142, in The ethological roots of culture ( R. A. Gardner , B. T. Gardner , B. Chiarell , and F. X. Plooji , eds.). Kluwer Academic Publishers, Dordrecht, vii + 477 pp. Google Scholar
  • 29. Rajan, K. E. , and G. Marimuthu . 1999. Localization of prey by the Indian false vampire bat Megaderma lyra. Mammalia, 63: 149–158. Google Scholar
  • 30. Rajan, K. E. , N. Gopukumarnair , and R. Subbaraj . 1999. Seasonal fruit preferences of the Indian short-nosed fruit bat Cynopterus sphinx (Vahl) (Chiroptera: Pteropodidae). The Journal of Bombay Natural History Society, 96: 24–27. Google Scholar
  • 31. Ratcliffe, J. M. , and H. M. Terhofstede . 2005. Roosts as information centres: social learning of food preferences of bats. Biology Letters, 1: 72–74. Google Scholar
  • 32. Reiger, J. F. , and E. M. Jakob . 1988. The use of olfaction in food location by frugivorous bats. Biotropica, 20: 161–164. Google Scholar
  • 33. Safi, K. , and G. Kerth . 2003. Secretions of the interaural gland contain information about individuality and colony membership in the Bechstein's bat. Animal Behaviour, 65: 363–369. Google Scholar
  • 34. Safi, K. , and G. Kerth . 2007. Comparative analyses suggest that information transfer promoted sociality in male bats in the temperate zone. The American Naturalist, 170: 465–472. Google Scholar
  • 35. Sánchez, F. , C. Korine , B. Pinshow , and R. Dudley . 2004. The possible roles of ethanol in the relationship between plants and frugivores: first experiments with Egyptian fruit bats. Integrative and Comparative Biology, 44: 290–294. Google Scholar
  • 36. Sánchez, F. , C. Korine , M. Steeghs , L. J. Laarhoven , S. M. Cristescu , F. J. Harren , R. Dudley , and B. Pinshow . 2006. Ethanol and methanol as possible odor cues for Egyptian fruit bats (Rousettus aegyptiacus). Journal of Chemical Ecology, 32: 1289–1300. Google Scholar
  • 37. Terkel, J. 1996. Cultural transmission of feeding behavior in the black rat (Rattus rattus). Pp. 17–48, in Social learning in animals: the roots of culture ( C. M. Hayes and B. G. Galef, Jr. , eds.). Academic Press, San Diego, 411 pp. Google Scholar
  • 38. Thiele, J. , and Y. Winter . 2005. Hierarchical strategy for relocation of food targets in flower bats: spatial memory versus cue-directed search. Animal Behaviour, 69: 315–327. Google Scholar
  • 39. Thies, W. , E. K. V. Kalko , and H.-U. Schnitzler . 1998. The roles of echolocation and olfaction in two Neotropical fruiteating bats, Carollia perspicillata and C. castanea, feeding on Piper. Behavioral Ecology and Sociobiology, 42: 397–409. Google Scholar
  • 40. Voigt, C. C. , and O. Von Helversen . 1999. Storage and display of odour by male Saccopteryx bilineata (Chiroptera, Emballo nuridae). Behavioral Ecology and Sociobiology, 47: 29–40. Google Scholar
  • 41. Von Helversen, O. , L. Winkler , and H. J. Bestmann . 2000. Sulphur-containing ‘perfumes’ attract flower-visiting bats. Journal of Comparative Physiology, 186A: 143–153. Google Scholar
  • 42. Wilson, M. A. , and B. L. McNaughton . 1993. Dynamics of the hippocampal ensemble code for space. Science, 261: 1055–1058. Google Scholar
  • 43. Winter, Y. , and K. P. Stich . 2005. Foraging in a complex naturalistic environment: capacity of spatial working memory in flower bats. The Journal of Experimental Biology, 208: 539–548. Google Scholar
  • 44. Wright, G. S. , G. S. Wilkinson , and C. F. Moss . 2011. Social learning of a novel foraging task by big brown bats, Eptesicus fuscus. Animal Behaviour, 82: 1075–1083. Google Scholar
  • 45. Yamamoto, T. , and K. Ueji . 2011. Brain mechanisms of flavor learning. Frontiers in Systems Neuroscience, 5: 76. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-77d71acb-279e-431c-8560-3168bda1e6c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.