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Deformation of rubber-metal vibration and seismic isolators 
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S u m m a r y .  The different going is considered near the 
decision of task about the tensely-deformed state of rubber-
metal vibration isolators are considered The method of the 
solution of a task about deformation of constructions from 
nearly incompressible material on application moment scheme 
of finite elements is offered. For the decision of task of 
nonlinear viscoelasticity deformation of construction the 
newton-Kantorovich method is used. 
K e y w o r d s :  finite element method, vibration isolator, 
nearly incompressibility. 

INTRODUCTION 

The considerable part of the population of 
the globe lives in the seismoactive territory. 
Therefore protection of buildings, constructions, 
infrastructure objects against adverse effect of 
pulse and vibration loadings of a geological and 
technogenic origin is actual. Traditional systems of 
seismoprotection provide seismic stability at the 
expense of increase of bearing ability of designs 
and their connections that stimulates creation of 
stronger, rigid and monolithic constructions. Thus 
construction cost in seismic countries in 
comparison with not seismic increases by 4-12% 
depending on seismodanger size. 

Use of nonconventional systems of 
vibroseismoprotection allows to provide safety of 
buildings and constructions at earthquakes and 
technogenic influences. Thus the budget cost of 
construction decreases by 3-6%, a material 
capacity of buildings and constructions for 5-10%, 
and also the scope of standard designs by control 
of areas with the increased seismicity extends, 
height of buildings increases when using the same 
designs. 

Among nonconventional ways of vibration 
and seismic protection the most perspective is 
application of vibration and seismic isolators on 
the basis of rubber-metal designs. On many 
parameters – simplicity of production, reliability, 
dimensions, costs such designs surpass traditional 
schemes of the same appointment. They allow to 
find essentially new constructive solutions of 
responsible knots of protection of modern technical 
systems The analysis of world practice of vibration 
and seismic protection of cars, buildings and 
constructions shows that systems with use of 
rubber-metal blocks is the most perspective. Such 
systems allow to protect cars and buildings at 
seismic influences not only in the horizontal and 
vertical planes, but also from torsion. Besides, 
application of rubber-metal layered vibration 
isolators allows to protect buildings and the people 
who were in them from influences of the subway, 
motor and railway transport Besides, application of 
rubber-metal layered vibration isolators allows to 
protect buildings and the people who were in them 
from influences of the subway, auto and railway 
transport. The problem of calculation intense the 
deformed condition of polymeric elements of 
designs is rather actual [Lavendel E. E. 1976, 
Dymnikov S. I. 1968, Kirichevskiy V. V. 2005, 
Biderman V. L, Sukhova N. A. 1968, 
Malkov V. M 1998, Ray M. 2010, Dyrda V. I. 
2010, Grigolyuk E. I., Kulikov G. M. 1988, 
Peng R. W. Landel R. F. 1975,  Mooney M.A., 
1940]. 
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RESEARCH OBJECT 

Rubber elements of vibration isolators have 
rather simple form. However conditions of loading 
are defined not only external loadings, but also a 
form of the metal elements of vibration isolators 
interfaced to them. Besides, rubber possesses weak 
compressibility. Calculation of parameters intense 
the deformed condition of such elements of 
designs probably various methods – experimental, 
empirical, approximate analytical, numerical. One 
of the main characteristics of a vibration and 
seismic isolators is rigidity on compression at 
vertical loading. 

RESULTS OF RESEARCH 

Let's consider the multilayered vibration 
isolators consisting of three metal plates of rather 
big thickness and two rubber blocks of a 
cylindrical form. For such vibration and seismic 
isolators during static tests rigidity on compression 
was defined at the various size of loading of rubber 
blocks: diameter 400mm, height 120mm. As a 
result of simple recalculations it is possible to 
define dependence between an deformation of a 
support and the enclosed loading: 

 

stC
P ,   (1) 

 

where:   – seismic support contraction; P  – 
compression loading; stC  – vertical rigidity of a 
seismic support. 

On the other hand, for small deformations 
( 10. ) Dyrda V.I. received analytical 
dependence between an contraction of a cylindrical 
rubber layer with free end faces and enclosed 
loading by the method of Ritz:  
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where: 0P  – compression loading on rubber 
layer with free end faces; h  – height of a rubber 
layer R  – radius of a rubber layer; G  – module of 
shift of rubber. 

At axial compression for small deformations 
( 10. ) dependence between an contraction of a 
rubber layer and enclosed loading is defined by a 
formula;  
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At calculation of seismic support it is 
necessary to consider that end faces of a rubber 

layer is vulcanized to metal plates. Then instead of 
loading 0P  it is necessary to insert the corrected 
value of real loading P which considers increase in 
rigidity at the expense of fixing of end faces into 
formulas (2) and (3): 

 




PP0 ,   (4) 
 

where: 241301  .   [Payne A. R., 1959] or  
250920  ..  [Lavendel E. E., 1976]. 

V. I. Dyrda suggested to calculate coefficient 
  on a formula: 

 

28301  . ,   (5) 
 

where: 
h
R

 ;   – coefficient of increase in 

rigidity at the expense of fixing of end faces. 
Universal numerical method of calculation 

of rubber vibration and seismic isolators which 
allows to consider asymmetry of loadings and 
fixing, and also to receive a full picture intense the 
deformed condition is finite element method. Thus 
the traditional final element method doesn't allow 
take account for a weak compressibility of rubber. 
For constructions from elastomers the moment 
scheme of finite elements with use of threefold 
approximation a component of a vector of 
movement, a tensor of deformations and function 
of change of volume of rubber is used.  
Approximating functions are accepted in the form 
of square polynoms: 
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wherе: iu - components of a vector of 
movements; ij  – components of a tensor of 
deformations;     - function of change of volume; 

 pqr
i  – decomposition components;  pqr  – a set 

of sedate coordinate functions of a look 
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Let's find to a contraction for a two-layer 
seismic support under the influence of loading 

кNP 50 , (the module of shift of rubber 
МPа.G 630 ). Dyrda V. I. Lisitsa N.I., etc. 

received the solution of a nonlinear task a 
precipitation of the continuous cylinder taking into 
account toughening at end faces by means of the 
accuracy Runge-Kutt method of the fourth order. 
he received value a seismic insulator precipitation 
( m.01270 ) rather well coincides with 
experimental data. 

The analysis of behavior of vibration and 
seismic isolator at imposition of cyclic or 
impulsive loading requires the account of 
viscoelastic properties of rubber elements. A 
viscoelasticity determines it dumping properties. 
For description of viscoelasticity deformation it is 
possible to take advantage of Volterra’s 
equalizations  
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where: )t(R  – kernel of relaxation. 

In addition, for description of behavior of 
nearly incompressible material different nonlinear 
laws are used. For example, Peng-Landel’s law 
[Peng R. W., Landel R. F., 1975.]  
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where: 1I , 3I  are invariants of tensor of 
deformations; B,  are constant of material, ijG  is a 
metrical tensor. 

We replace resilient permanent is the module 
of compression B  and module of shear   we get 
the Volterra’s operators  
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The tensor of deformations can be presented 
as a sum linear and nonlinear constituents  
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Then the invariants of Cauchy- Green’s 
tensor of deformations also can be presented as a 
sum linear and nonlinear parts 

 

nl III 111  , 
llllI 3322111  , 

nnnnI 3322111  .       (12) 
 

We put (12) in (10) and we lay out 3I  in the 
Taylor series about with 13 I  as the center of the 
circle of convergence. Then we cast aside by virtue 
of weak compressibility of material members of 
decomposition the second order of trifle and we get 
the linearized correlation. For the decision of task 
of nonlinear deformation of constructions different 
methods are used [Dymnikov S.I., 1968, Lavendel 
E.E., 1980, Kirichevskiy V.V., 2005]. Most 
effective among them is the modified Newton-
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Kantorovich method. At the use of this going near 
the decision of task on every step on loading get 
the specified linearized equalization 

  

k
ii P)u(NKu 1 ,       (13) 

 

where: K is matrix of inflexibility of 
construction; )u(N i is a vector of the nonlinear 
additions, conditioned by physical and geometrical 
non-linearity; kP  is vector of key forces; u  is a 
vector of the key moving. On the basis of this 
approach the task of determination is decided 
seismic support. 

The problem is also solved on the basis of 
the moment scheme of finite elements on the basis 
of the obtaining complex «MIRELA+». In fig. 1-4 
are presented finite element model and distribution 
of movements and tension in the radial section of a 
rubber element 

 

  

Fig. 1. Finite element model 

 

Fig. 2. Axial movement 

 

 

Fig. 3. Radial movement 

 

Fig. 4. Stress 12  

As comparison we will give a calculation 
example a precipitation of a rubber layer of a 
seismic support on formulas (2) and (3). Results of 
calculations are given in table. 

Table. Seismic support contraction 

Indicator Experiment 
Formula 

 FEM 
(2) (3) 

, m 0.012 0.0084 0.0128 0.0122 

CONCLUSIONS 

The method of calculation of vibration and 
seismic isolators is developed. The analysis of the 
received results shows that use of a finite element 
method allows to receive a complete picture of 
distribution of tension and movements on the 
volume of an element of a design taking into 
account weak compressibility of a material. 
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ДЕФОРМИРОВАНИЕ 
РЕЗИНОМЕТАЛЛИЧЕСКИХ 

ВИБРОСЕЙСМОИЗОЛЯТОРОВ 

Юрий Козуб 

А н н о т а ц и я .  Рассмотрены различные подходы к 
решению задачи о напряженно-деформированном 
состоянии резинометаллических виброизоляторов. 
Предложен метод решения задачи о деформировании 
элементов конструкций из слабосжимаемого материала 
основанный на применении моментной схемы конечных 
элементов. Для решения задачи нелинейного 
вязкоупругого деформирования конструкции 
используется метод Ньютона-Канторовича. 
К л ю ч е в ы е  с л о в а . Метод конечных элементов, 
виброизолятор, слабая сжимаемость. 

 
 
 

 
 


