PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 65 | 3 |

Tytuł artykułu

Trypanosoma cruzi: The early contact between insect-derived metacyclic trypomastigotes and the mammalian cells

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Natural transmission of Trypanosoma cruzi to human is established when feces of hematophagous triatomines contaminated with insect-derived from metacyclic trypomastigotes get in contact with the skin, conjunctiva or even oral route. Article is aimed at updating the knowledge about the early interaction between insect-derived metacyclic trypomastigotes at the port of entry and the host. There are few works in the literature describing this first contact between host and natural insect-derived metacyclic trypomastigote. Although it is currently accepted that T. cruzi parasites can penetrate through the lesion left by the insect´s bite, pioneer data do not support this hypothesis as the main via; however, once in the dermis metacyclic trypomastigotes can spread rapidly and likely escape from inoculation site through endothelial cells and disseminate to the body via the bloodstream. A moderate inflammatory reaction took place in the skin at the port of entry within hours, the cytokines induces recruit of neutrophils predominantly, probably because triatomine feces microbiota is present in the inoculum that in some way, its presence modify the progress of the infection.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

65

Numer

3

Opis fizyczny

p.193-204,fig.,ref.

Twórcy

autor
  • Centro de Investigaciones Biomedicas, Universidad Autonoma de Campeche, Mexico

Bibliografia

  • [1] Perlowagora-Szumlewicks A., Moreira C. 1994. In vivo differentiation of Trypanosoma cruzi-1. Experimental evidence of the influence of vector species on metacyclogenesis. Memorias da Instituto Oswaldo Cruz 89: 603-618. doi:10.1590/s0074-02761994000400018
  • [2] Monteón V., Godínez S., Cruz-Zetina G., Balmes J., López R., Hernández O. 2009. Caracterización biológica de aislados mexicanos de Trypanosoma cruzi: metaciclogénesis, parasitemia y resistencia contra benznidazol. Revista Biomedica 20: 206-214 (in Spanish). doi:10.32776/revbiomed.v20i3.137
  • [3] Tamayo L.D., Guhl F., Vallejo G.A., Ramõ-Ârez J.D. 2018. The effect of temperature increase on the development of Rhodnius prolixus and the course of Trypano soma cruzi metacyclogenesis. PLoS Neglected Tropical Diseases 12: e0006735. https://doi.org/10.1371/journal.pntd.0006735
  • [4] Mc Cabe A., Yañez F., Pinto R., López A., Ortíz S., Muñoz-San Martin., Botto-Mahan C., Solari A. 2019. Survivorship of wild caugh Mepraia spinolai nymphs: The effect of seasonality and Trypanososma cruzi infection after feeding and fasting in the laboratory. Infection, Genetics and Evolution 71: 197-204. doi:10.1016/j.meegid.2019.04.002
  • [5] Monteón V.M., Furuzawa-Carballeda J., Alejandre-Aguilar R., Aranda-Fraustro A., Rosales-Encina J.L., Reyes P.A. 1996. American trypanosomosis: in situ and generalized features of parasitism and inflammation kinetics in a murine model. Experimental Parasitology 83: 267-274.
  • [6] Schuster J.P., Schaub G.A. 2003. Trypanosoma cruzi: skin-penetration kinetics of vector-derived metacyclic trypomastigotes. International Journal for Parasitology 30: 1475-1479.
  • [7] Schenkman S., Eichinger D. 1993. Trypanosoma cruzi trans-sialidase and cell invasion. Parasitology Today 9: 218-222.
  • [8] Schenkman S., Ferguson M.A.J., Heise N., Cardoso de Almeida M.L., Mortara R.A., Yoshida N. 1993. Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Molecular and Biochemical Parasitology 59: 293-304.
  • [9] Pereira-Chioccola V.L., Acosta-Serrano A., Correia De Almeida I., Ferguson M.A., Souto-Padron,T., Rodrigues M.M. 2000. Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-α-galactosyl antibodies. Journal Cell Science 113: 1299-1307.
  • [10] Rubin-de-Celis S., Uemura H., Yoshida N., Schenkman S. 2006. Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cellular Microbiology 8: 1888-1898.
  • [11] Fonseca L.M., da Costa K.M., Chaves V.S., Freirede-Lima C.G., Morrot A., Mendonça-Previato L., Previato J.O., Freire-de-Lima L. 2019. Theft and reception of host cell’s sialic acid: dynamics of Trypanosoma cruzi trans-sialidases and mucin-like molecules on Chagas’ disease immunomodulation. Frontiers in Immunology 10: 164. doi:10.3389/fimmu.2019.00164
  • [12] Retana Moreira L., Rodríguez Serrano F., Osuna A. 2019. Extracellular vesicles of Trypanosoma cruzi tissue-culture cell-derived trypomastigotes: Induction of physiological changes in non-parasitized culture cells. PLoS Neglected Tropical Diseases 13: e0007163. https://doi.org/10.1371/journal.pntd.0007163
  • [13] Ramirez M.I., Ruiz R.C., Araya J.E., Franco da Silveira J., Yoshida N. 1993. Involvement of the stage-specific 82-kilodalton adhesion molecule of Trypanosoma cruzi metacyclic trypomastigotes in host cell invasion. Infection and Immunity 61: 3636-3641.
  • [14] Cortez M., Atayde V., Yoshida N. 2006. Host cell invasion mediated by Trypanosoma cruzi surface molecule gp82 is associated with F-actin disassembly and is inhibited by enteroinvasive Escherichia coli. Microbes and Infection 8: 1502-1512. doi:10.1016/j.micinf.2006.01.007
  • [15] Ferreira-Rodrigues J.P., Takahashi-Sant’ana G.H., Juliano M.A., Yoshida N. 2017. Inhibition of host cell lysosome spreading by Trypanosoma cruzi metacyclic stage-specific surface molecule gp90 downregulates parasite invasion. Infection and Immunity 85: e00302-17. doi:10.1128/IAI.00302-17
  • [16] Scharfstein J., Schmitz V., Morandi V., Capella M.M.A., Lima A.P.C.A., Morrot A., Juliano Muller-Ester W. 2000. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B2 receptors. Journal of Experimental Medicine 192: 1289-1299. doi:10.1084/jem.192.9.1289
  • [17] Tayde V.D., Neira I., Cortez M., Ferreira D., Freymuller E., Yoshida N. 2004. Molecular basis of non-virulence of Trypanosoma cruzi clone CL-14. International. Journal of Parasitology 34: 851-860. doi:10.1016/j.ijpara.2004.03.003
  • [18] Alvarez V.E., Niemirowicz, G.T., Cazzulo J.J. 2012. The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochimicl Biophysic Acta 195-220. doi:10.1016/j.bbapap.2011.05.011
  • [19] San Francisco J., Barría I., Gutierrez B., Neira I., Muñoz C., Sagua H., Araya J., Andrade J., Zailberger A., Catalan A., Remonsellez F., Vega J., Gonzalez J. 2017. Decreased cruzipain and gp85/trans-sialidase family protein expression contributes to loss of Trypanosoma cruzi trypomastigote virulence. Microbes and Infection 19: 55e61. doi:10.1016/j.micinf.2016.08.003
  • [20] Doyle P., Yuan M., Zhou, IvHsieh I., Greenbaum D., McKerrow J., Engel J. 2011. The Trypanosoma cruzi protease cruzipain mediates immune evasion. PLoS Pathology 7: e1002139. doi:10.1371/journal.ppat.1002139
  • [21] Scharfstein J.. 2018. Subverting bradykinin-evoked inflammation by co-opting the contact system: lessons from survival strategies of Trypanosoma cruzi. Current Opinion in Hematology 25: 347-357. doi:10.1097/MOH.0000000000000444
  • [22] Ferreira V., Molina M.C., Valck C., Rojas A., Aguilar L., Ramírez G. 2004. Role of calreticulin from parasites in its interaction with vertebrate hosts. Molecular Immunology 40: 1279-1291. doi:10.1016/j.molimm.2003.11.018
  • [23] Tambourgi D.V., Cavinato R.A., De Abreu C.M., Peres B.A., Kipnis T.L. 1995. Detection of Trypanosoma-decay accelerating factor antibodies in mice and humans infected with Trypanosoma cruzi. American Journal of Tropical Medicine and Hygene 52: 516-520.
  • [24] Cestari I., Ansa-Addo E., Deolindo P., Inal J.M., Ramirez M.I. 2012. Trypanosoma cruzi immune evasion mediated by host cell derived microvesicles. Journal of Immunology 188: 1942-1952. doi:10.4049/jimmunol.1102053
  • [25] Lederkremer R., Bertello L. 2001. Glycoinositolphospholipids, free and as anchors of proteins, in Trypanosoma cruzi. Current Pharmacy Design 7: 1165-1179. doi:10.2174/1381612013397519
  • [26] Buscaglia C.A., Campo V.A., Frasch A.C.C., Di Noia J.M. 2006. Trypanosoma cruzi surface mucins: host-depende coat diversity. Nature Reviews Microbiology 4: 229-236. doi:10.1038/nrmicro1351
  • [27] Cestari I., Ramirez M.I. 2010. Inefficient complement system clearance of Trypanosoma cruzi metacyclic trypomastigotes enables resistant strains to invade eukaryotic cells. PLoS ONE 5: e9721. doi:10.1371/ journal.pone.0009721
  • [28] Lidani K., Bavia L., Ambrosio A., de Messias-Reason L. 2017. The complement system: A prey of Trypanosoma cruzi. Frontiers in Microbiology 8: 607. doi:10.3389/fmicb.2017.00607
  • [29] González A., Härtel S., Mansilla J., Sánchez-Valdéz F., Ferreira A. 2018. Variable numbers of calreticulin genes in Trypanosoma cruzi correlate with atypical morphology and protein expression. Immunobiology 223: 802-806. doi:10.1016/j.imbio.2018.08.005
  • [30] León-Pérez F., Gómez-Garcia L., Alejandre-Aguilar R., López R., Monteón V.M. 2007. Mexican Trypanosoma cruzi isolates: in vitro susceptibility of epimastigotes to anti-Trypanosoma cruzi drugs and metacyclic forms to complement-mediated lysis. Vector Borne Zoonotic Diseases 7: 330-336. doi:10.1089/vbz.2006.0604
  • [31] Arroyo-Olarte R.D., Martínez I., Cruz-Rivera M., Mendlovic F., Espinoza B. 2018. Complement system contributes to modulate the infectivity of susceptible TcI strains of Trypanosoma cruzi. Memorias da Instituto Oswaldo Cruz 113: e170332. doi:10.1590/0074-02760170332
  • [32] Alvarez M.N., Piacenza L., Irigoin, F., Peluffo, G., Radi R. 2004. Macrophage derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi, Archives of Biochemical and Biophysic 432: 222-232.
  • [33] Piacenza L., Zago M.P. Peluffo G., Alvarez M.N., Basombrio M.A., Radi R. 2009. Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence. International Journal for Parasitology 39: 1455-1464. doi:10.1016/j.ijpara.2009.05.010
  • [34] Mateo H., Marin C., Perez-Cordon G., Sanchez-Moreno M. 2008. Purification and biochemical characterization of four iron superoxide dismutases in Trypanosoma cruzi. Memorias Instituto Oswaldo Cruz 103: 271e276. doi:10.1590/s0074-02762008000300008
  • [35] Coutinho L., Ferreira M.A., Cosson A., Batista M.M., Batista Dda G., Minoprio P., Degrave W.M., Berneman A., Soeiro N. 2009. Inhibition of Trypanosoma cruzi proline racemase affects hostparasite interactions and the outcome of in vitro infection. Memorias Instituto Oswaldo Cruz 104: 1055-1062. doi:10.1590/s0074-02762009000800001
  • [36] Reina-San-Martin B., Degrave W., Rougeot C., Cosson A., Chamond N., Cordeiro-Da-Silva A., Arala-Chaves M., Coutinho P., Minoprio A. 2000. Bcell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. Nature Medicine 6: 890-897.
  • [37] Eickhoff C., Dunn B., Sullivan N., Hoft D. 2013. Comparison of the infectivity of Trypanosoma cruzi insect-derived metacyclic trypomastigotes after mucosal and cutaneous contaminative challenges. Memorias Instituto Oswaldo Cruz 108: 508-511. doi:10.1590/S0074-02762013000400018
  • [38] Monteon V., Alducin C., Hernández J., Ramos-Ligonio A., Lope R. 2013. High frequency of human blood in Triatoma dimidiata captured inside dwellings in a rural community in the Yucatan Peninsula, Mexico, but low antibody seroprevalence and electrocardiographic findings compatible with Chagas disease in humans. American Journal of Tropical Medicine and Hygiene 88: 566-571. doi:10.4269/ajtmh.12-0583
  • [39] Guevara A., Garzon E., Bowen C., Cordova X., Gomez E., Ouassi A. 2005. High infection rates of Triatoma dimidiata are associated with low levels of Trypanosoma cruzi seroprevalence in Pedro Carbo, Ecuador: Use of a tc24 gene-based PCR approach. Parasite 12: 65-68.
  • [40] Monteon V., Quen-Rámirez E., Macedo-Reyes V., Lopez R., Acosta-Viana K., Pennigton P., Ramos-Ligonio A. 2016. Pre-exposure to faeces or saliva of Triatoma dimidiata decreases parasitemia in mice challenged with Trypanosoma cruzi: a description of the inflammatory reaction at the inoculation site. Annals of Parasitology 62: 209-219. doi:10.17420/ap6203.54
  • [41] Monteon V., May-Gil I., Nuñez-Oreza L., Lopez R. 2018. Feces from wild Triatoma dimidiata induces local inflammation and specific immune response in a murine model. Annals of Parasitology 64: 367-377. doi:10.17420/ap6404.173
  • [42] Almeida I.C., Camargo M.M., Procopio D.O., Silva L.S., Mehlert A., Travassos L., Gazzinelli R., Ferguson M. 1999. Highly purified glycosylphosphati dylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO Journal 19: 1476-1485.
  • [43] Campos M.A., Almeida I.C., Takeuchi O., Akira S., Valente E.P., Procópio D.O., Travassos L.R., Smith .JA., Golenbock D.T., Gazzinelli R.T. 2001. Activation of toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. Journal of Immunology 167: 416-423.
  • [44] Rodrigues M.M., Oliveira A.C., Bellio M. 2012. The immune response to Trypanosoma cruzi: role of tolllike receptors and perspectives for vaccine development. Journal of Parasitology Research: 507874. doi:10.1155/2012/507874
  • [45] Bafica A., Santiago H., Goldszmid Ropert C., Gazzinelli R., Sher A. 2006. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. Journal of Immunology 177: 515-519.
  • [46] Caetano B., Carmo B., Melo M., Cerry A., dos Santos S.L., Bartholomeu D.C., Golenbock D.T., Gazzinelli R.T. 2011. Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi. Journal of Immunology 187: 903-911.
  • [47] Piccinini A.M., Midwood K.S. 2010. DAMPening inflammation by modulating TLR signalling. Mediators of Inflammatio. doi:10.1155/2010/672395
  • [48] Monteon V., Hernández O., López R., Reyes P.A. 2009. Cytokine expression at the inoculation site and nearby tissue an animal model infected with metacyclic trypomastigotes of Trypanosoma cruzi. Tropical Medicine Health 37: 141-147. doi:10.2149/tmh.2009-03
  • [49] Gómez-García L., Alejandre-Aguilar R., Aranda-Fraustro A., Lopez R., Monteón V.M. 2005. Description of inflammation and cytokine profile at the inoculation site and in heart tissue of mice reinfected with Trypanosoma cruzi vector derivedmetacyclic trypomastigotes. Parasitology 130: 511-522.
  • [50] Chessler A.D., Unnikrishnan M., Bei A.K., Daily J.P., Burleigh B.A. 2009. Trypanosoma cruzi triggers an early type I IFN response in vivo at the site of intradermal infection. Journal of Immunology 182: 2288-2296. doi:10.4049/jimmunol.0800621
  • [51] Chessler A.D., Caradonna K.L., Da’dara A., Burleigh B.A. 2011. Type I interferons increase host susceptibility to Trypanosoma cruzi infection. Infection Immunity. 79; 2112-9. doi:10.1128/IAI.01176-10.
  • [52] Coates B., Sullivan D., Makanji M., Du N., Olson C., Muller W., Engman D., Epting C. 2013. Endothelial transmigration by Trypanosoma cruzi. PLoS ONE 8: e81187. doi:10.1371/ journal.pone.0081187
  • [53] Todorov A., Andrade D., Pesquero J., Araujo R., Bader, M., Stewart J., Gera L., Müller-Esterl W., Morandi V., Goldenberg R., Castro-Faria Neto H., Scharfstein J. 2002. Trypanosoma cruzi induces edemato genic responses in mice and invades cardiomyocytes and endothelial cells in vitro by activating distinct kinin receptor (B1/B2) subtypes. FASEB Journal doi:10.1096/fj.02-0477fje
  • [54] Chiribao M.L., Libisch G., Parodi-Talice A, Robello C. 2014. Early Trypanosoma cruzi infection reprograms human epithelial cells. Biomedical Research International 2014: 439501. doi:10.1155/2014/439501
  • [55] Aliberti J.C., Cardoso M.A, Martins G.A., Gazzinelli R.T., Vieira L.Q., Silva J.S. 1996. Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murinemacrophages in response to live trypomastigotes. Infection and Immunity 64: 1961-1967.
  • [56] Luna-Gomes T., Filardy A.A., Rocha J.D., Decote-Ricardo D., LaRocque-de-Freitas I.F., Morrot A., Bozza P.T., Castro-Faria-Neto H.C., DosReis G.A., Nunes M., Freire-de-Lima C.G. 2014. Neutrophils increase or reduce parasite burden in Trypanosoma cruzi-infected macrophages, depending on host strain: role of neutrophils elastase. PLoS One 9: e90582. doi:10.1371/journal.pone.0090582
  • [57] Magalhães L.M.D., Viana A., de Jesus A.C., Chiari E, Galvão L., Gomes .JA., Gollob K.J., Dutra W.O. 2017. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils. PLoS One 27: e0188083. doi:10.1371/journal.pone.0188083
  • [58] Sousa-Rocha D., Thomaz-Tobias M., Alves-Diniz, L.F., Souza P.S., Pinge-Filho P., Alves-Toledo K. 2015. Trypanosoma cruzi and its soluble antigens induce NET release by stimulating toll-like receptors PLoS One 10: e0139569. doi:10.1371/journal.pone.0139569
  • [59] Planelles L., Thomas M.C., Marañón C., Morell M., López M.C. 2003. Differential CD86 and CD40 costimulatory molecules and cytokine expression pattern induced by Trypanosoma cruzi in APCs from resistant or susceptible mice. Clinical Experimental Immunology 131: 41-47.
  • [60] Gil-Jaramillo N., Motta F., Favali C., Bastos I. 2016. Dendritic cells: a double-edged sword in immune responses during Chagas disease. Frontiers in Microbiology 7: 1076. doi:10.3389/fmicb.2016.01076
  • [61] Houston-Ludlam G.A., Belew A.T., El-Sayed N.M. 2016. Comparative transcriptome profiling of human foreskin fibroblasts infected with the Sylvio and Y strains of Trypanosoma cruzi. PLoS ONE 11: e0159197. doi:10.1371/journal.pone.0159197
  • [62] Guimarães-Pinto K., Nascimento D.O., Corrêa-Ferreira A., Morrot A., Freire-de-Lima C.G., Lopes M.F., DosReis G.A., Filardy A.A. 2018. Trypanosoma cruzi infection induces cellular stress response and senescence-like phenotype in murine fibroblasts. Frontiers in Immunology 9: 1569. doi:10.3389/fimmu.2018.01569

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-74fb036c-49e6-43e1-9e42-09afc25178ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.