PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 74 | 3 |

Tytuł artykułu

Modulatory effect of VIP injected into hippocampal CA1 area on anxiety in olfactory bulbectomized rats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Vasoactive intestinal peptide (VIP) is a neuropeptide, which is widely distributed in the central nervous system and peripheral tissues, acting both as a neurotransmitter and neuromodulator. Despite its extensive expression in the hippocampus, amygdala and other limbic system structures, the effects of VIP on anxiety and depression have not yet been fully investigated. The aim of the present study was to evaluate the involvement of VIP and VIP receptors in the mechanism of anxiety in rats with a model of depression (bilateral olfactory bulbectomy), using the elevated plus-maze test. VIP and a non-specific antagonist of VIP receptors (VIP6-28) were administered unilaterally into the hippocampal CA1 area of bulbectomized (OBX) rats. VIP (10 ng) showed a tendency for an anxiety-modulatory effect upon right side injection, by reducing significantly the closed arm time and increasing the open arm time. VIP (100 ng) injected unilaterally (left or right) into CA1 area induced an anxiolytic-like effect on the activity of OBX rats (increased the number of open arms entries, open arm time and the ratio open/total number of entries).VIP6-28 failed to antagonize the anxiety-related behavior of OBX rats in the plus maze. An unexpected finding in our study was that upon pretreatment with VIP6-28, VIP (10 ng), injected unilaterally (left or right) exerted an anti-anxiety like effect (increased the number of open arm entries, open arm time and the ratio open/total number of entries). Our data point to a possible involvement of hippocampal VIP-ergic neurons in modulating emotional processes or adaptive responses to stressful stimuli in a rat model of depression.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

3

Opis fizyczny

p.317-327,fig.,ref.

Twórcy

autor
  • Department of Physiology and Pathophysiology, Medical University, Varna, Bulgaria
autor
  • Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Faculty of Pre-School and Primary School Education, SU “Sv. Kl. Ohridsky”, Sofia, Bulgaria
autor
  • Department of Physiology and Pathophysiology, Medical University, Varna, Bulgaria
autor
  • Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Department of Pathophysiology, Medical University, Sofia, Bulgaria

Bibliografia

  • Acsady L, Gorcs TJ, Freund TF (1996b) Different popula¬tions of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience 73: 317— 334.
  • Agarwal A, Halvorson LM, Legradi G (2005) Pituitary adenylate cyclase-activating polypeptide (PACAP) mim¬ics neuroendocrine and behavioral manifestations of stress: Evidence for PKA-mediated expression of the corticotropin-releasing hormone (CRH) gene. Brain Res Mol Brain Res 38: 45-57.
  • Alves SH, Pinheiro G, Motta V, Landeira-Fernandez J, Cruz AP (2004) Anxiogenic effects in the rat elevated plus- maze of 5-HT(2C) agonists into ventral but not dorsal hippocampus. Behav Pharmacol 15: 37-43.
  • Belcheva I, Georgiev V, Chobanova M, Hadjiivanova C (1997) Behavioral effects of angiotensin II microinjected into CA1 hippocampal area. Neuropeptides 3: 60-4.
  • Belcheva I, Ivanova M, Tashev R, Belcheva S (2009) Differential involvement of hippocampal vasoactive intestinal peptide in nociception of rats with a model of depression. Peptides 30: 1497-1501.
  • Carlsen J, De Olmos J, Heimer L (1982) Tracing of two-neu¬ron pathways in the olfactory system by the aid of transneu¬ronal degeneration: projections to the amygdaloid body and hippocampal formation. J Comp Neurol 208: 196-208.
  • Ciranna L, Cavallaro S (2003) Opposing effects by pituitary adenylate cyclase-activating polypeptide and vasoactive in testinal peptide on hippocampal synaptic transmission. Exp Neurol 184: 778-784.
  • Cottrell GA, Veldhuis HD, Rostene WH, de Kloet ER (1984) Behavioural actions of vasoactive intestinal peptide (VIP). Neuropeptides 4: 331-341.
  • Culić M, Saponjić J, Todorović V, Janković B, Udović S, Peković S, Stojiljković M, Ratković M, Nikolić A, Rakić L (1995) Changes in neuropeptide levels after brain dam¬age in rats. Neuropeptides 29: 59-62.
  • Cunha-Reis D, Sebastiao AM, Wirkner K, Illes P, Ribeiro JA (2004) VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells. Br J Pharmacol 143: 733-744.
  • De Souza EB, Seifert H, Kuhar MJ (1985) Vasoactive intes¬tinal peptide receptor localization in rat forebrain by autoradiography. Neurosci Lett 56:113-120.
  • Degroot A, Kashluba S, Treit D (2001) Septal GABAergic and hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests. Pharmacol Biochem Behav 69: 391-399.
  • Eichenbaum H (2004) Hippocampus: cognitive processes andneural representations that underlie declarative mem¬ory. Neuron 44: 109-120.
  • Engin E, Treit D (2007) The role of hippocampus in anxiety:intracerebral infusion studies. Behav Pharmacol 18: 365-374.
  • Fishbein VA, Coy DH, Hocart SJ, Jiang NY, Mrozinski JEJ r, Mantey SA, Jensen RT (1994) A chimeric VIP-PACAP analogue but not VIP pseudopeptides function as VIP receptor antagonists. Peptides 15: 95-100.
  • Gjerris A, Rafaelsen OJ, Vendsborg P, Fahrenkrug J, Rehfeld JF (1984) Vasoactive intestinal polypeptide decreased in cerebrospinal fluid (CSF) in atypical depression. J Affect Disord 7: 325-337.
  • Gozes I, Brenneman DE (1989) VIP molecular biology and neurobiological function. Mol Neurobiol 3: 201-236.
  • Haas HL, Gahwiler BH (1992) Vasoactive intestinal poly¬peptide modulates neuronal excitability in hippocampal slices of the rat. Neuroscience 47: 273-277.
  • Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI (2012) Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 166: 4-17.
  • Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, Matsuda T, Sakaue M, Miyazaki J, Niwa H, Tashiro F, Yamamoto K, Koga K, Tomimoto Sh, Kunugi A, Suetake S, Baba A (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98: 13355-13360.
  • Holmes PV (1999) Olfactory bulbectomy increases preproenkephalin mRNA levels in the ventral striatum in rats. Neuropeptides 33: 206-211.
  • Holmes PV, Davis RC, Masini CV, Primeaux SD (1998) Effects of olfactory bulbectomy on neuropeptide gene expression in the rat olfactory/limbic system. Neuroscience 86: 587-596.
  • Huang SK, Pan JT (1996) Stimulatory effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activat ing peptide on tuberoinfundibular dopaminergic neuron activity in estrogen-treated ovariectomized rats and their correlation with prolactin secretion. Neuroendocrinology 64: 208-214.
  • Ivanova M, Ternianov A, Belcheva I, Tashev R (2010) Anxiogenic effect of vasoactive intestinal polypeptide (VIP) microinjected into the CA1 hippocampal area. CR Acad Bulg Sci 63: 1829-1836.
  • Ivanova M, Belcheva I, Belcheva S, Negrev N, Tashev R (2011) Influence of Vasoactive Intestinal Peptide on anxiety of rats with a model of depression after bilateral administration into hippocampal CA1 area. CR Acad Bulg Sci 64: 599-606.
  • Ivanova M, Belcheva S, Belcheva I, Negrev N, Tashev R (2012) Lateralized hippocampal effects of vasoactive intestinal peptide on learning and memory in rats in a model of depression. Psychopharmacology (Berl) 221: 561-574.
  • Jolkkonen J, Hartikainen P, Soikkeli R, Bissette G, Nemeroff C, Ricckinen P (1991) Acorrelation study of CSF neuro¬peptides in Alzheimer's and Parkinson's disease. Neuropeptides 19: 97-102.
  • Kelly JP, Wrynn A, Leonard BE (1997) The olfactory bul- bectomized rat as a model ofdepression: an update. Pharmacol Ther 74: 299-316.
  • Kingsbury MA, Miller KM, Goodson JL (2013) VPAC receptor signaling modulates grouping behavior and social responses to contextual novelty in a gregarious finch: A role for a putative prefrontal cortex homologue. Horm Behav 64: 511-518.
  • Kormos V, Gaszner B (2013) Role of neuropeptides in anxi¬ety, stress, and depression: fromanimals to humans. Neuropeptides 47: 401-419.
  • Legradi G, Das M, Giunta B, Hirani K, Mitchell EA, Diamond DM (2007) Microinfusion of pituitary adenylate cyclase-activating polypeptide into the central nucle¬us of amygdala of the rat produces a shift from an active to passive mode of coping in the shock-probe fear/defen¬sive burying test. Neural Plast 2007: ID79102.
  • Markos F, Hennessy BA, Fitzpatrick M, O'Sullivan J, Snow HM (2002) An evaluation of the efficacy of vasoactive intestinal polypeptide antagonists in vivo in the anaesthe¬tized dog. Pharmacology 66: 206-210.
  • Markos F, Snow HM (2001) The potentiation of sinusar- rhythmia by vasoactive intestinal polypeptide (VIP) in theanaesthetized dog. Neuropeptides 35: 238-243.
  • Masuo Y, Matsumoto Y, Tokito F, Tsuda M, Fujino M (1993) Effects of vasoactiveintestinal polypeptide (VIP and pitu¬itary adenylate cyclase activating polypeptide (PACAP) on the spontaneous release of acetylcholine from the rathippocampus by brain microdialysis. Brain Res 611: 207-215.
  • Nelson PG, Kuddo T, Song EY, Dambrosia JM, Kohler S, Satyanarayana G, Vandunk C, Grether JK, Nelson KB (2006) Selected neurotrophins, neuropeptides, and cytok- ines: developmental trajectory and concentrations in neonatal blood of children with autism or Down syn¬drome. Int J Dev Neurosci 24: 73-80.
  • Otto C, Martin M, Wolfer DP, Lipp HP, Maldonado R, Schütz G (2001) Altered emotional behavior in PACAP- type-I-receptor-deficient mice. Brain Res Mol Brain Res 92: 78-84.
  • Padovan CM, Del Bel EA, Guimaräes FS (2000) Behavioral effects in the elevated plus maze of an NMDA antagonist injected into the dorsal hippocampus: influence of restraint stress. Pharmacol Biochem Behav 67: 325-330.
  • Pellegrino LJ, Cushman AJ (1967) A Stereotaxic Atlas of the Rat Brain. Appleton, New York, NY.
  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a mea¬sure of anxiety in the rat. J Neurosci Methods 14: 149-167.
  • Powell KJ, Abul-Husn NS, Jhamandas A, Olmstead MC, Beninger RJ, Jhamandas K (2002) Paradoxical effects of the opioid antagonist naltrexone on morphine analgesia, tolerance, and reward in rats. J Pharmacol Exp Ther 300: 588-596.
  • Rostene WH, Fischette CT, McEwen BS (1983) Modulation by vasoactive intestinalpeptide (VIP) of serotonin recep¬tors in membranes from rat hippocampus. J Neurosci 12: 2414-2419.
  • Saitoh A, Yamada M, Yamada M, Takahashi K, Yamaguchi K, Murasawa H, Nakatani A, Tatsumi Y, Hirose N, Kamei J (2008) Antidepressant-like effects of the deltaopioid receptor agonist SNC80 ([(+)-4-[(alphaR)-alpha-[(2S,5R)- 2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxy- phenyl) methyl]-N,N-diethylbenzamide) in an olfactory bulbectomized rat model. Brain Res 1208: 160-169.
  • Saitoh A, Yamaguchi K, Tatsumi Y, Murasawa H, Nakatani A, Hirose N, Yamada M, Yamada M, Kamei J (2007) Effects of milnacipran and fluvoxamine on hyperemo¬tional behaviors and the loss of tryptophan hydroxylase- positive cells in olfactory bulbectomized rats. Psychopharmacology (Berl) 191: 857-865.
  • Saiz Ruiz J, Carrasco Perera JL, Hernanz A (1992) Plasma neuropeptides in affective and anxiety disorders. Arch Neurobiol (Madr) 55: 1-5.
  • Sandford JJ, Argyropoulos SV, Nutt DJ (2000) The psycho- biology of anxiolytic drugs. Part 1: Basic neurobiology. Pharmacol Ther 88: 197-212.
  • Skoglosa Y, Lewen A, Takei N, Hillered L, Lindholm D (1999) Regulation of pituitary adenylate cyclase activat¬ing polypeptide and its receptor type 1 after traumatic brain injury: Comparison with brain-derived neurotrophic factor and the induction of neuronal cell death. Neuroscience 90: 235-247.
  • Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29: 627-647.
  • Staines DR (2007) Is Parkinson's disease an autoimmune disorder of endogenous vasoactive neuropeptides? Med Hypotheses 69: 1208-1211.
  • Van Landeghem FK, Weiss T, Oehmichen M, von Deimling A (2007) Cellular localization of pituitary adenylate cyclase-activating peptide (PACAP) following traumatic brain injury in humans. Acta Neuropathol 113: 683-693.
  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and itsreceptors: from structure to functions. Pharmacol Rev 52: 269-324.
  • Wang D, Noda Y, Tsunekawa H, Zhou Y, Miyazaki M, Senzaki K, Nabeshima T (2007) Behavioural and neuro¬chemical features of olfactory bulbectomized rats resem¬bling depression with comorbid anxiety. Behav Brain Res 178: 262-273.
  • Yang K, Trepanier CH, Li H, Beazely MA, Lerner EA, Jackson MF, Macdonald JF (2009) Vasoactive intestinal peptide acts via multiple signal pathways to regulate hip- pocampal NMDA receptors. Hippocampus 19: 779-789.
  • Zaben MJ, Gray WP (2013) Neuropeptides and hippocampal neurogenesis. Neuropeptides 47: 431-438.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-74f4f2e8-d4c4-4007-b10d-a9ec819aa9a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.