PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 18 | 5 |

Tytuł artykułu

The effect of sodium amidotrizoate on the growth and metabolism of Wolffia arrhiza (L.) Wimm.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Sodium amidotrizoate is characterized by structural similarity with TIBA, and it could be speculated that it functions as a plant growth regulator. The aim of this work was to detect how it influences the growth and metabolism of the smallest vascular plant, Wolffia arrhiza Wimm., that is commonly used in biotechnological treatment of sewage, especially of human and agricultural origin. Sodium amidotrizoate strongly suppressed the growth of W. arrhiza (expressed as a fresh weight) by 21-30%, chlorophyll a by 9-30%, chlorophyll b by 26-30%, total carotenoids by 28-41%, monosaccharides by 6-10% and water-soluble proteins by 10-28% at the range of concentrations of 10-5-10-4 M, in comparison to the control. On the other hand, sodium amidotrizoate at lower concentrations (10-7-10-6 M) increased the content of analyzed biochemical compounds in W. arrhiza, except of the total pool of carotenoids. After seven days of treatment with 10-7-10-6 M sodium amidotrizoate, cultures were analyzed by SDS-PAGE, which showed the presence of some new specific polypeptides. Moreover, 10-7-10-6 M sodium amidotrizoate caused a two-fold increase in the activities of ascorbate peroxidase (APX) and NADH peroxidase. 10-8 M sodium amidotrizoate had no statistically significant effect on the W. arrhiza. Sodium amidotrizoate acts as a plant growth regulator and it could be speculated that it performs activities, similar to TIBA.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

5

Opis fizyczny

p.885-891,fig.,ref.

Twórcy

  • Department of Plant Biochemistry, Institute of Biology, University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland
autor
  • Department of Plant Biochemistry, Institute of Biology, University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland
autor
  • Department of Plant Biochemistry, Institute of Biology, University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland
autor
  • Department of Pharmacology, Medical University of Lublin, Al.Raclawickie 1, 20-059 Lublin, Poland

Bibliografia

  • 1. TOMIĆ S., GABDOULLINE R.R., KOJIĆ-PRODIĆ B., WADE R.C. Classification of auxin plant hormones by interaction property similarity indices. J. Comput. Aid. Mol. Des. 12, 63, 1998.
  • 2. GUERRERO J.R., GARRIDO G., ACOSTA M., SANCHEZ-BRAVO J. Influence of 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid on indoleacetic acid transport in carnation cuttings: relationship with rooting. J. Plant Growth Regul. 18, 183, 1999.
  • 3. SINGH S.K., SYAMAL M.M. Anti-auxin enhance Rosa hybrida L. micropropagation. Biol. Plantarum 43, 279, 2000.
  • 4. MORRIS D.A., RUBBERY P.H., JARMAN J., SABATER M. Effect of protein synthesis inhibitors on transmembrane auxin transport in Cucurbita pepo L. hypocotyls segments. J. Exp. Bot. 42, 773, 1991.
  • 5. NAM M.H., KANG B.G. Modulation of phytotropin receptors by fluoride and ATP. J. Biochem. Mol. Biol. 28, 552, 1995.
  • 6. NAM M.H., KANG B.G. Impairment of polar auxin transport by protein kinase inhibitors in etiolated pea seedlings. J. Plant Biol. 38, 343, 1995.
  • 7. NAM M.H., OH S.E., KANG B.G. Enhancement of polar auxin transport by cycloheximide in etiolated pea seedlings. Plant Sci. 142, 173, 1999.
  • 8. KALIAMOORTHY S., KRISHNAMURTHY K.V. Secondary wall deposition in tracheary elements of cucumber grown in vitro. Biol. Plantarum 41, 515, 1998.
  • 9. WALDEN R., LUBENOW H. Genetic dissection of auxin action: more questions than answers? Trends Plant Sci. 1, 335, 1996.
  • 10. DHALIWAL H.S., YEUNG E.C., THORPE T.A. TIBA inhibition of in vitro organogenesis in excised tobacco leaf explants. In Vitro Cell Dev. Biol. – Plant. 40, 235, 2004.
  • 11. GODZIEMBA-CZYŻ J. Characteristic of vegetative and resting forms in Wolffia arrhiza (L.) Wimm. II. Anatomy physical and physiological properties. Acta Soc. Bot. Pol. 39, 421, 1970.
  • 12. FUJITA M., MORI K., KODERA T. Nutrient removal and starch production through cultivation of Wolffia arrhiza. J. Biosci. Bioeng. 87, 194, 1999.
  • 13. SAMOGYI M. Notes on sugar determination. J. Biol. Chem. 195, 19, 1954.
  • 14. WELLBURN A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307, 1994.
  • 15. LOWRY O.H., ROSEBROUGH N.J., FARR A.L., RANDALL R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265, 1951.
  • 16. LAEMMLI U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680, 1970.
  • 17. FAIRBANKS J., STECK T.L., WALLACH D.F.H. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10, 2606, 1971.
  • 18. NAKANO Y., ASADA K. Hydrogen peroxidase is scavended by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867, 1981.
  • 19. ISHIDA A., OOKUBU K., ONO K. Formation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-asociated peroxidase from cultured liverwort cells Marchantia polymorpha L Plant Cell Physiol. 28, 723, 1987.
  • 20. GAFUROV R.G., ZEFIROV N.S. A role of the molecular structure of phytoregulators in chemical signal perception by receptors of plant hormonal system. Moscow University Chemistry Bulletin 62, 52, 2007.
  • 21. TYBURSKI J., TRETYN A. The role of light and polar auxin transport in root regeneration from hypocotyls of tomato seedlings cuttings. Plant Growth Regul. 42, 39, 2004.
  • 22. JARRET R.L. Effects of chemical growth retardants on growth and development of sweetpotato (Ipomoea batatas (L.) Lam.) in vitro. J. Plant Growth Regul. 16, 227, 1997.
  • 23. ROSS J.J. Effects of auxin transport inhibitors on gibberellins in Pea. J. Plant Growth Regul. 17, 141, 1998.
  • 24. DAY J. The effect of plant growth regulator treatments on plant productivity and capsule dehiscence in sesame. Field Crop. Res. 66, 15, 2000.
  • 25. BOURKE W.M., BUTTS J.S., FANG S.C. Effect of herbicides on glucose metabolism in root tissue of garden peas. Plant growth regulators and other herbicides. Weeds 12, 272, 1964.
  • 26. JACOBSON A., JACOBSON L. Inhibitory effects of 2,3,5- triiodobenzoic acid on ion absorption, respiration, and carbon metabolism in excised barley roots. Plant Physiol. 67, 282, 1981.
  • 27. GILBERT G.A., KNIGHT J.D., VANCE C.P., ALLAN D.L. Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Ann. Bot. 85, 921, 2000.
  • 28. FLURY T., KREUZ K., WAGNER E. H₂O₂ generation and the influence of antioxidants during the 2,3,5-triiodobenzoic acid-mediated induction of glutathione S-transferase in soybean. Phytochemistry 49, 37, 1998.
  • 29. CHWANG-YANG H., YI T.H., YU-CHANG T., CHING H.K. Expression of ascorbate peroxidase 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J. Exp. Bot. 58, 3273, 2007.
  • 30. CARIĆ D., TOMIŠIĆ V., KVEDER M., GALIĆ N., PIFAT G., MAGNUS V., ŠOŠKIĆ M. Absorption and fluorescence spectra of ring-substitued indole-3-acetic acids. Biophys. Chem. 111, 247, 2004.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7459da2e-fa58-404d-bc96-bdd2ec56dc94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.