PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Modification of ileal proteome in growing pigs by dietary supplementation with inulin or dried chicory root

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Recently, numerous plant-based preparations have been used for health promotion or disease prevention in animals. Chicory is one of the plants that contain various nutraceutics, mainly inulin type fructans (ITFs) showing prebiotic character. In pigs, a significant proportion of ITFs is fermented in the distal part of the small intestine to lactate and short-chain fatty acids (SCFAs). Previous studies have shown that SCFAs are involved in structural rearrangement of the intestinal epithelial mucosa and stimulate intestinal barrier assembly. These changes should be accompanied by a modification of enterocyte protein composition and abundance. Thus, we hypothesized that ITFs, due to their direct or indirect effect, can modify ileal proteome. The experiment was performed on 24 castrated male pigs (PIC × Penarlan P76) assigned to 3 groups (n = 8) fed cereal-based diets: control or experimental: supplemented with 4% of dried chicory root or with 2% of inulin. Mucosa proteins were separated using two-dimensional electrophoresis, followed by the identification of statistically valid proteins with the aid of Matrix Associated Laser Desorption Ionization – Time of Flight mass spectrometry (MALDI-TOF MS). Experimental diets significantly altered expression of proteins involved in: glycolysis/gluconeogenesis, biosynthesis of amino acids, cytoskeleton rearrangement, protein synthesis and processing, cell proliferation and differentiation, and iron absorption. Changes in the expression of proteins associated with energetic metabolism, cell proliferation and cytoskeleton rearrangement may suggest an impact of dried chicory root on the functional maturation of the ileal mucosa. Additionally, changes in transferrin abundance suggest the significance of chicory root and inulin supplementation for intestinal iron absorption.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.177-186,fig.,ref.

Twórcy

  • Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
  • Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
autor
  • Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
autor
  • Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
autor
  • Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
autor
  • Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland

Bibliografia

  • AOAC International, 2011. Official Methods of Analysis of AOAC International. Current Through Revision 4. 18th Edition. Gaithersburg, MD (USA)
  • Awad W.A., Ghareeb K., Paßlack N., Zentek J., 2013. Dietary inulin alters the intestinal absorptive and barrier function of piglet intestine after weaning. Res. Vet. Sci. 95, 249–254, https://doi.org/10.1016/j.rvsc.2013.02.009
  • Barszcz M., Taciak M., Skomiał J., 2018. Influence of different inclusion levels and chain length of inulin on microbial ecology and the state of mucosal protective barrier in the large intestine of young pigs. Anim. Prod. Sci. 58, 1109–1118, https://doi.org/10.1071/AN16014
  • Bernadskaya Y.Y., Patel F.B., Hsu H.-T., Soto M.C., 2011. Arp2/3 promotes junction formation and maintenance in the Caenorhabditis elegans intestine by regulating membrane association of apical proteins. Mol. Biol. Cell 22, 2886–2899, https://doi.org/10.1091/mbc.e10-10-0862
  • Bommer U.-A., 2012. Cellular function and regulation of the translationally controlled tumour protein TCTP. Open Allergy J. 5, 19–32, http://doi.org/10.2174/1874838401205010019
  • Chang J., Chance M.R., Nicholas C. et al., 2008. Proteomic changes during intestinal cell maturation in vivo. J. Proteomics 71, 530–546, https://doi.org/10.1016/j.jprot.2008.08.003
  • Diao H., Jiao A.R., Yu B. et al., 2017. Stimulation of intestinal growth with distal ileal infusion of short-chain fatty acid: a reevaluation in a pig model. RSC Adv. 7, 30792–30806, https://doi.org/10.1039/C7RA03730A
  • Gałązka I., 2002. The composition of chicory flour of selected chicory cultivars Polanowicka and Fredonia in relation to root sizes and the date of harvest. Zywn.-Nauk Technol. Jakosc 3(32), Suppl., 37–45
  • Gibson G.R., Hutkins R., Sanders M.E. et al., 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502, https://doi.org/10.1038/nrgastro.2017.75
  • Hamer H.M., Jonkers D.M., Vanhoutvin S.A., Troost F.J., Rijkers G., de Bruine A., Bast A., Venema K., Brummer R.J., 2010. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin. Nutr. 29, 738–744, https://doi.org/10.1016/j.clnu.2010.04.002.
  • Hampson D.J., 1986. Alterations in piglet small intestinal structure at weaning. Res. Vet. Sci. 40, 32–40, https://doi.org/10.1016/S0034-5288(18)30482-X
  • Helenius T.O., Misiorek J.O., Nyström J. et al., 2015. Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism. Mol. Biol. Cell 26, 2298–2310, https://doi.org/10.1091/mbc.E14-02-0736
  • Idzerda R.L., Huebers H., Finch C.A., McKnight G.S., 1986. Rat transferrin gene expression: tissue-specific regulation by iron deficiency. Proc. Natl. Acad. Sci. U. S. A. 83, 3723–3727, https://doi.org/10.1073/pnas.83.11.3723
  • Johnson-Henry K.C., Pinnell L.J., Waskow A.M., Irrazabal T., Martin A., Hausner M., Sherman P.M., 2014. Short-chain fructooligosaccharide and inulin modulate inflammatory responses and microbial communities in Caco2-bbe cells and in a mouse model of intestinal injury. J. Nutr. 144, 1725–1733, https://doi.org/10.3945/jn.114.195081
  • Kolachala V.L., Sesikeran B., and Nair K.M., 2007. Evidence for a sequential transfer of iron amongst ferritin, transferrin and transferrin receptor during duodenal absorption of iron in rat and human. World J. Gastroenterol. 13, 1042–1052, https://doi.org/10.3748/wjg.v13.i7.1042
  • Lamers R.-J.A.N., Wessels E.C.H.H., van de Sandt J.J.M., Venema K., Schaafsma G., van der Greef J., van Nesselrooij J.H.J., 2003. A pilot study to investigate effects of inulin on Caco-2 cells through in vitro metabolic fingerprinting. J. Nutr. 133, 3080–3084, https://doi.org/10.1093/jn/133.10.3080
  • Lee D.B., Jamgotchian N., Allen S.G., Kan F.W.K., Hale I.L., 2004. Annexin A2 heterotetramer: role in tight junction assembly. Am. J. Physiol. Renal Physiol. 287, F481–F491, https://doi.org/10.1152/ajprenal.00175.2003
  • Lepczyński A., Herosimczyk A., Barszcz M., Ożgo M., Taciak M., Skomiał J., 2016. Inulin-type fructans trigger changes in iron concentration and activity of bone metabolism biomarkers in blood plasma of growing pigs. J. Anim. Feed Sci. 25, 343–347, https://doi.org/10.22358/jafs/67471/2016
  • Lepczyński A., Herosimczyk A., Ożgo M., Marynowska M., Pawlikowska M., Barszcz M., Taciak M., Skomiał J., 2017. Dietary chicory root and chicory inulin trigger changes in energetic metabolism, stress prevention and cytoskeletal proteins in the liver of growing pigs – a proteomic study. J. Anim. Physiol. Anim. Nutr. 101, e225–e236, https://doi.org/10.1111/jpn.12595
  • Lu J.J., Zou X.T., Wang Y.M., 2008. Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. J. Anim. Feed Sci. 17, 568–578, https://doi.org/10.22358/jafs/66685/2008
  • Luo J., Zheng A., Meng K., Chang W., Bai Y., Li K., Cai H., Liu G., Yao B., 2013. Proteome changes in the intestinal mucosa of broiler (Gallus gallus) activated by probiotic Enterococcus faecium. J. Proteomics 91, 226–241, https://doi.org/10.1016/j.jprot.2013.07.017
  • Madureira P.A., Hill R., Miller V.A., Giacomantonio C., Lee P.W.K., Waisman D.M., 2011. Annexin A2 is a novel cellular redox regulatory protein involved in tumorigenesis. Oncotarget 2, 1075–1093, https://doi.org/10.18632/oncotarget.375
  • Masri Al S., Hünigen H., Al Aiyan A., Rieger J., Zentek J., 2015. Influence of age at weaning and feeding regimes on the postnatal morpholog y of the porcine small intestine. J. Swine Health Prod. 23, 186–203
  • Montefusco A., Semitaio G., Marrese P.P., Iurlaro A., De Caroli M., Piro G., Dalessandro G., Lenucci M.S., 2015. Antioxidants in varieties of chicory (Cichorium intybus L.) and wild poppy (Papaver rhoeas L.) of Southern Italy. J. Chem. 2015, 923142, http://doi.org/10.1155/2015/923142
  • Morgan E.H., Oates P.S., 2002. Mechanisms and regulation of intestinal iron absorption. Blood Cells Mol. Dis. 29, 384–399, https://doi.org/10.1006/bcmd.2002.0578
  • Ozgo M., Lepczynski A., Herosimczyk A., 2015. Two-dimensional gelbased serum protein profile of growing piglets. Turk. J. Biol. 39, 320–327, https://doi.org/10.3906/biy-1408-45
  • Pasqualetti V., Altomare A., Guarino MP. Et al., 2014. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLoS One. 9, e98031. https://doi.org/10.1371/journal.pone.0098031
  • PauneskuT., MittalS., ProctićM., OryhonJ., KorolevS.V., JoachimiakA., Woloschak G.E., 2001. Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int. J. Radiat. Biol. 77, 1007–1021, https://doi.org/10.1080/09553000110069335
  • Rekiel A., Bielecki W., Więcek J., Kulisiewicz J., 2010. Histological changes in the small intestinal epithelium in fattening pigs fed selected feed additives. Acta Vet. Brno 79, 67–71, https://doi.org/10.2754/avb201079010067
  • Sheverdin V., Jung J., Lee K., 2013. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system. J. Anat. 223, 278–288, https://doi.org/10.1111/joa.12077
  • Tako E., Glahn R.P., Welch R.M., Lei X., Yasuda K., Miller D.D., 2008. Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Br. J. Nutr. 99, 472–480, https://doi.org/10.1017/S0007114507825128
  • Wang Q., Zhou Y., Rychahou P., Fan T.W.-M., Lane A.N., Weiss H.L., Evers B.M., 2017. Ketogenesis contributes to intestinal cell differentiation. Cell Death Differ. 24, 458–468, https://doi.org/10.1038/cdd.2016.142
  • Wang X., Yang F., Liu C., Zhou H., Wu G., Qiao S., Li D., Wang J., 2012. Dietary supplementation with the probiotic Lactobacillus fermentum I5007 and the antibiotic aureomycin differentially affects the small intestinal proteomes of weanling piglets. J. Nutr. 142, 7–13, https://doi.org/10.3945/jn.111.147074
  • Wu R.Y., Abdullah M., Määttänen P., Pilar A.V., Scruten E., JohnsonHenry K.C., Napper S., O’Brien C., Jones N.L., Sherman P.M., 2017. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function. Sci. Rep. 7, 40820, https://doi.org/10.1038/srep40820
  • Yasuda K., Dawson H.D., Wasmuth E.V., Roneker C.A., Chen C., Urban J.F., Welch R.M., Miller D.D., Lei X.G., 2009. Supplemental dietary inulin influences expression of iron and inflammation related genes in young pigs. J. Nutr. 139, 2018–2023, https://doi.org/10.3945/jn.109.110528
  • Zhou Q., Toivola D.M., Feng N., Greenberg H.B., Franke W.W., Omary M.B., 2003. Keratin 20 helps maintain intermediate filament organization in intestinal epithelia. Mol. Biol. Cell 14, 2959–2971, https://doi.org/10.1091/mbc.E03-02-0059

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7439625a-2ad8-4281-b721-4192fc40c5b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.