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Abstract: Assimilation and photosynthetic efficiency (maximal quantum yield) of young oaks were com-
pared in coppice and standard sessile oak stands of comparable age (100 years) under different light intensity 
categories: under minimum light – ISF < 20%, low light – 20%<ISF<25%, medium light – 25%<ISF<30% 
and in the open, without mature canopy cover – ISF >30% during favourable and drought conditions. 
Measurements of maximal assimilation rates were performed at a constant temperature of the measure-
ment block (20°C), a CO2 concentration of 400 µmol/l, flow 500 µmol/s and different light intensities: 0, 
50, 250, 600, 1200 and 1800 μmol/m2s during three consecutive growing seasons (2012, 2013 and 2014). 
In every category at least 8 young naturally regenerated seedlings and sprouts of different coppice stools 
were measured. The quantum yield in optimal conditions in standards was highest in the category of closed 
canopy, while in coppices in medium light category. During severe drought in 2013 the drop in efficiency 
of standards was evident in all categories, while in coppices no differences in efficiency were observed be-
tween favourable 2012 and 2013 with expressed drought stress, proving the advantage of young coppices 
over standards in this particular light category. However, the beneficial effects of restoration coppicing are 
not guaranteed. It is our belief that in time such advantage might decrease; it would be therefore interesting 
to compare responses in time and define, when response abilities of both studied systems become equal. 
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Introduction
Coppice systems, as one of the oldest known for-

est-management systems (Honnay et al., 2004) are 
characterized by a vegetative reproduction, which is 
different to generative establishment of the stands, 
also known as standards or high forests (Peterken, 
1993). In central Europe, where broadleaved forests 
have been managed as coppices for centuries, most 
coppice woods have been transformed into high-for-
ests either by replanting or by reducing the under-
wood to one or more large trunks (Peterken, 1996; 
Rackham, 2008). Coppicing was abandoned in the 
second part of 19th century due to socio-economic 
changes, leaving large areas of forest developing into 
aged coppice stands (Buckley, 1992).

Recently, interest in the reintroduction of coppic-
ing to protect endangered species (Vild et al., 2013) 
and obtain a sustainable source of energy (McKenney 
et al., 2011) has been steadily increasing in many Eu-
ropean regions (Müllerová et al., 2015). 

Recently, the conservational aspect and biodiver-
sity (Peterken, 1996) and as a historical landscape 
element and habitat with high nature conservation 
value are becoming more popular (Buckley, 1992; 
Kadavý et al., 2011).

Climate change brings about a new impetus to 
understanding the consequences of different forest 
management practices for forest resilience (IPCC, 
2001; Millar et al., 2007). It is expected that the 
abundance of extreme events in Europe, especially in 
Central and Southern Europe, would increase (Lind-
ner et al., 2010; Milad et al., 2011). Drought has been 
suggested as the major factor causing tree decline in 
Europe in the last decades (Allen et al., 2010), so 
there is a need to encourage forest resilience both for 
benefit of reliable resource provision and for conser-
vation (Allen et al., 2010). Understanding the bene-
fits and threats of exploiting vegetative regeneration 
is the first step in assessing, whether promoting this 
means of reproduction could be used for conserva-
tion by increasing forest persistence under future cli-
mate conditions (Sjölund & Jump, 2013). 

Sessile oak, known as drought resistant tree spe-
cies (Leuzinger et al., 2005) developed morphologi-
cal (curled leaves, leaf loss, deep roots) and physio-
logical (stomatal conductance, osmotic adjustment) 
strategies to adapt to drought stress (Aranda et al., 
1996; Dickson & Tomlinson, 1996). An intermediate 
species develops deeper and larger root system and 
smaller xylem vessels that are less exposed to cavi-
tation, compared to pedunculate oak (Arend et al., 
2011). Under drought events, sessile oaks decrease 
net CO2 assimilation rates and stomatal conduct-
ance, although they remain productive under severe 
drought (Bréda et al., 1993). When drought period is 
over, oaks re-open the stomata (Zweifel et al., 2009). 

Seedlings adapt to drought conditions by higher car-
bon partitioning to roots – producing more fine-root 
biomass and decreasing the production of leaves and 
stem biomass in order to reduce transpiration loss 
(Thomas & Gausling, 2000).

Increased drought in the low-latitude range edge of 
species has been shown to have a negative effect on 
seedling survival as well as adult growth in Quercus 
ilex L. (Pérez-Ramos et al., 2010), Fagus sylvatica (Silva 
et al., 2012) and Phillyrea latifolia (Lloret et al., 2004), 
further threatening the persistence of such popula-
tions under climate change (Jump et al., 2010). Veg-
etative regeneration presents an alternative regener-
ation pathway that can be used to maintain existing 
trees in a forest, facilitating the adaptation of associ-
ated species by avoiding substantial changes in spe-
cies composition, and therefore promoting current 
forest persistence (Sjölund & Jump, 2013). 

In areas that are more likely to be affected by 
drought, keeping an overstorey of high forest and 
promoting a coppice understorey would provide suf-
ficient canopy cover and consequently soil cover to 
preserve soil humidity. Sprouts from stools are be-
lieved to have better competitive abilities than gener-
ative seedlings because of their pre-established root 
system and consequently better water and nutrient 
availability (Zhu et al., 2012).

Main silvicultural tool is the creation of appropri-
ate light environment in forest stands. The quality 
and stability of forests is therefore in tight connec-
tion with our understanding of tree-response to 
different light conditions. Assessing differences be-
tween standards and coppice would therefore high-
light the important benefits and weaknesses of both 
systems and provide insights into adaptive forest 
management strategies. 

We aimed at comparing performance of 10-year-
old sessile oaks (Quercus petraea (Matt.) Liebl.) from 
the seed origin (standards) with sprouts of the same 
age growing from the stools in the coppice forest un-
der contrasting light conditions. Response of both 
groups was compared under various light intensi-
ties according to closure of mature canopy (1) and 
in drought (2). Our aim was to compare same light 
categories and highlight those, where performance of 
young seedlings would show most differences. We 
hypothesised that same light categories in coppices 
and standards would show no differences in quan-
tum yield and there would be no difference between 
coppices and standards of the same light category in 
yield during drought.
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Material and methods
Site description

The study was performed in coppice and high ses-
sile oak stands of the same age (100 years). The study 
sites were located in a mixed Carpineto-Quercetum 
forest located near Brno in South Moravia, Czech 
Republic (49°14'N, 16°36'E). Both sites were 3.1 km 
apart. High forest has been managed by the shelter-
wood system, while the coppice forest plots were 
established after cutting of an overaged sessile oak 
coppice forest with different felling intensities (Ka-
davý et al., 2011).

The area is situated 360 m above sea level with 
loess soils of 30-40 cm. The subsoil is an illimerized 
layer of forest soil on loamy alluvium and granodi-
orite with an inaccessible ground water table. The 
long-term mean annual temperature reaches 7.5°C, 
while the mean annual precipitation is 550–650 mm 
– 360 mm during the growing season (1980-2010 pe-
riod). According to the Köppen classification, the cli-
mate is moist with mild winters and well distributed 
precipitation over all seasons (CMHI, 2014). Sessile 
oak (Quercus petraea) is the predominant tree species 
in the forest sites. 

Light conditions

On every site, four research plots were established 
under mature canopy stand ranged from complete 
canopy closure to open sky conditions assessed by 
hemispherical photo analysis (Čater et al., 2012). 

The proportion of diffuse light compared to the open 
area conditions, defined as the indirect site factor 
(ISF%) was used to determine the following light 
categories (Fig. 1): 
–– Minimal light – under canopy conditions 

(ISF<20%), 
–– Low light – at the forest edge, (20%<ISF<25%), 
–– Medium light – in the open with some single trees 

(25%<ISF<30%) and 
–– High light – without canopy shelter (ISF>30%).

In every light category and every site assimilation 
response of at least 8 seedlings and same number of 
dominant sprouts of the same age (10 years), emerg-
ing from different stools in coppices were measured. 

Colour digital hemispherical photographs were 
taken during windless days and standard overcast 
sky conditions 150 cm above the forest floor and 
measured seedlings/sprouts, when the solar disk 
was completely obscured. 15 photos were taken in 
every light category. The camera was levelled and the 
fish-eye lens oriented toward magnetic north using a 
compass prior to each shot. Photographs were taken 
with a digital Canon Rebel T3 with the fine quali-
ty, calibrated fish-eye lens and analysed with Win-
Scanopy software (2010 pro-d). Exposure fitting was 
done to above canopy conditions prior to shooting on 
every plot as indicated by Zhang et al. (2005) without 
noteworthy blooming effects. In the process of hem-
ispherical photograph analysis, a ‘‘standard overcast 
sky’’ (SOC) model was applied for diffuse light dis-
tribution. For the calculation within the vegetation 
period, the sun’s position was specified every 10 
min. The solar constant was defined as 1.370 W/m2, 

Fig. 1. Light in ISF (%) corresponding to PFD (mol/m2day) in all observed light categories
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and 0.6 was set for atmospheric transmissivity and 
0.15 for the proportion of diffuse radiation compared 
to calculated direct potential radiation. An automat-
ic thresholding method based on the same colour 
scheme was applied for the discrimination between 
sky and canopy elements in all digital photographs. 

Assimilation and quantum yield (Φ)

After determination of comparable light condi-
tions, the assimilation response of seedlings and 
sprouts in every light category were measured during 
consecutive growing periods (2012, 2013 and 2014) 
during same dates (mid-June, end of June, beginning 
of July) after complete foliage development. Parame-
ters such as (Amax) and quantum yield (Φ) in sprouts 
and seedlings at different light categories were com-
pared in favourable and dry (2013) conditions (end 
of July, beginning of August), as described in Čater et 
al. (2014). Assimilation was measured with Li-6400 
portable infra-red gas exchange device. 

Light saturation curves were established to com-
pare the ecophysiological response of net assimila-
tion (Amax). Measurements were performed at a con-
stant temperature of the measurement block (20°C), 
a CO2 concentration of 350 µmol/l, flow 500 µmol/s 
and different light intensities: 0, 50, 250, 600, 1200 
and 1800 µmol/m2 s. Maximum assimilation (Amax) 
rates were used to compare four groups between dif-
ferent openings of mature canopies. All assimilation 
values were recorded after they had held constant for 
2 min or until the coefficient of variability (CV%) 

dropped below 5%. The response was measured on 
at least four sun leaves per tree, located in the upper 
third of the tree-crown height. 

The number of seedling in different light intensity 
categories changed for standards decreased, while in 
coppices it increased. With increasing light intensity 
in both adult standards and coppices numbers of in-
dividuals decreased (Fig. 2).

The height of trees of the same age on plots are 
presented in the following table (Table 1).

Quantum yield, defined as the amount of fixed 
CO2 per amount of absorbed light quanta (Lambers 
et al., 1998) were defined for each light category in 
every forest complex.

Drought conditions

During measurements, soil moisture was evaluat-
ed in the upper soil horizon (0-10cm) in three loca-
tions at every light treatment by using ThetaProbe 
ML2x (Delta T Devices, UK).

Drought was considered after five weeks with-
out precipitation at the end of July and the begin-
ning of August 2013 on both locations (http://www.
intersucho.cz/en/#mother), with soil moisture (%) 

Fig. 2. Number of individuals in every light category. Black lines represent the standards and grey the coppices; straight 
line represents young trees, while dotted the adult individuals

Table 1. Average height of seedlings and sprouts (mm) in 
different light categories

Minimum
light

Low
light

Medium
light

High
light

Standards 169±30 1962±104 2080±106 2048±67
Coppices 141±30 1110±105 1860±94 2012±71
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significantly dropping from average 38.6±8.3% 
to 10.4±4.9% in the upper soil layer (0-10cm) 
(p≤0.000, ***).

Data analysis

One, two and three one way factor analysis of var-
iance (ANOVA) was used for determination of differ-
ences in quantum yield between light treatments and 
between coppices and standards for every year after 
normality and homogeneity of variances were test-
ed. Also interactions between factors (year of obser-
vation, management system, light categories) were 
evaluated. Significance level was p<0.05. Statistical 
analyses and calculations were performed using Stat-
Soft and Inc., 2004, STATISTICA version 7.0 (www.
statsoft.com). 

Results
Maximal photosynthetic response (Amax) 
and quantum yield (Φ)

Under favourable conditions (2012 and 2014) re-
garding water limitations no significant differences 
were observed in Amax in same light categories of 
sprouts and seedlings. 

Differences between light categories in both 
sites were significant in 2012 (Fstandards=3.39***, Fcop-

pice=4.72 ***), 2013 (Fstandards=5.84 *, Fcoppice= 4.96 **) 
and 2014 (Fstandards=5.12 ***,Fcoppice=5.17 ***). 

Group with Medium light in the coppiced stands 
reached the level of maximal assimilation, which was 
similar to the response of the group in High light 
in the standards. Category of complete openness 
in coppices reached highest response in all groups, 
which was also 9% higher than response in the same 
light category of standards (Fig. 3).

Fig. 3. Maximal assimilation response standard and coppice stands, four light categories. Presented are averages for 2012 
for every light category (N=32, df 3, 31). Bars are standard errors

Fig. 4. Maximal quantum yield (Φ max) in different light categories and years. Evident drop in response could be noticed 
in both forest types during 2013 drought conditions. Bars are standard errors
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Quantum yield (Φ) in all groups of different light 
intensity was far higher in coppices than in stand-
ards. The highest values in standards were recorded 
in group with lowest light intensity, followed by the 
groups in Low, Medium and Open light conditions 
while the highest values in coppices were measured 
in the group Medium light with almost complete can-
opy openness, followed by Low light and Minimum 
light and lowest in the High light category, without 
mature canopy shelter (Fig. 4). 

Analysis confirmed significant differences be-
tween years (considered as dry and favourable), be-
tween management systems (coppice and standards) 
and also light categories. All interactions between 
factors were also highly significant (Table 2).

Quantum yield in category of Minimum light was 
similar, while in all other categories significantly 
higher, than in standards.

Drought conditions

During drought maximal assimilation dropped in 
all light categories progressively from the complete 
closure towards open area light conditions. Only the 
differences in response in the first category (Min. 
light) were not significant, while in coppices all cat-
egories indicated lower values during drought con-
ditions, but (like in Minimum light category, stand-
ards) without significance (Fig. 4, 5). 

Quantum yield between optimal and drought con-
ditions of the same light categories in standards were 
all highly significant with exception of Minimum 
light category where no significant differences were 
observed (p=0.0584). In coppices the differences 
between optimal and drought conditions increased 
by their absolute value from complete closure (Min. 
light) towards category with smallest canopy cover 
(Medium light), which also indicated the highest ab-
solute yield also in stressed conditions. Differences 
in quantum yield were significant only in complete 
openness (High light), and not in other categories 
(Fig. 4, 5, Table 2). 

Discussion

The performance of young coppice oaks compared 
to standards were compared in perspective of dryer 
climate events under four different light categories. 
As drought events from the 1990’s in central Europe 
evidently increase (Trnka et al., 2011), the rise of 
temperatures is reported to be more influential than 
decrease in precipitation (Brázdil et al., 2013; Čater, 
2015). In regions prone to drought, heat exposure in 
canopy gaps and an increase in temperature at ground 
level are detrimental to plant germination. Manage-
ment systems, such as coppicing, have been adapted 
to such climate (Coppini & Hermanin, 2007).

Fig. 5. Maximal assimilation response standard and coppice stand conditions, all light categories during favourable (emp-
ty characters) and drought conditions (black characters). Bars are standard errors

Table 2. Results of one-, two- and three-way ANOVA (left) 
and post-hoc analysis for coppice and standards in quan-
tum yield (Φ) between same light categories (right) 

Effect F P Standards vs. coppices
2012

Year (1) 5180,2 0,0000*** Minimum light NS
System (2) 17341,5 0,0000*** Low light p=0.000***
Light (3) 5133,8 0,0000*** Medium light p=0.000***
1*2 286,2 0,0000*** High light p=0.000***
1*3 252,9 0,0000*** 2013
2*3 2105,1 0,0000*** Minimum light NS
1*2*3 47,5 0,0000*** Low light p=0.000***

Medium light p=0.000***
High light p=0.000***
2014
Minimum light NS
Low light p=0.000***
Medium light p=0.000***
High light p=0.000***
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Increased soil water content after coppicing were 
reported by Salisbury (1924) and Cummings and 
Cook (1992) in Tilia cordata and Corylus avellana for-
est, managed in the past as a coppice-with-stand-
ards. Similar results were reported by Cotillas et al. 
(2009) where was soil water content in dry years sig-
nificantly higher under recently coppiced plots (cut 
3–5 years prior to the study) compared with older 
plots (cut 9–11 years before). Surface soil water con-
tent depleted faster under higher densities of stools 
(2000 stools/ha) before canopy closure.

In our study during optimal conditions, the max-
imal assimilation of young standard sessile oaks in-
creased progressively with increasing light; values 
were always higher in corresponding categories of 
coppices, indicating their advantage over standards.

The maximal assimilation rates indicated similar 
distribution in first two light categories under shelter 
conditions between coppices and standards, while in 
Open light a clear difference was observed between 
both forest types. 

The maximal quantum yield in coppices showed 
just the opposite pattern according to the light cate-
gories than standards; in 2012 they both started with 
comparable responses in the dark, in the category 
with most of the canopy coverage (Min. light, Φcoppice= 
0.0564, Φstandards=0.0542) and gradually decreased 
with increasing light (Low, Medium and Open light, 
Φstandards=0.0304), while in coppices it increased with 
light and reached its maximum in the category of 25–
30% ISF (Medium light, Φcoppice= 0.0677), showing 
completely different adaptation with increasing light. 

During drought (2013) the absolute value between 
light categories in standards decreased significantly, 
but the relative pattern remained the same. In the 
coppices the drop in efficiency of all categories was 
evident, but not as significantly as in standards. Most 
pronounced was the difference in the light category 
of Medium light, corresponding to 15 mol/m2day ra-
diation, where Φ in standards dropped below 0.018 
and only to 0.0542 in coppices.

Recovery rates in 2014 were in all categories lower 
than values from 2012. It is our belief that coppices 
adapt to available resources in root systems, as also 
the number of seedlings in coppices followed the 
same pattern (Fig. 2).

Coppices have expressed potential against standard 
seedlings in quantum yield, especially under drought 
stress, proved by our experiment. Several studies 
showed better performance of sprouts in earliest 
stages (Lloret et al., 2004). Drake et al. (2009) con-
firmed that coppice and standards experience differ-
ent water availability because of contrast in the spatial 
distribution of roots and differences in amount of be-
low-ground biomass. Accordingly, water-use efficien-
cy can be greater for coppice compared to seedlings 
in early development stages, as there is an excess of 

water and nutrients relative to plant’s requirements, 
so photosynthetic apparatus is not limited by resource 
availability (Drake et al., 2012). However, it is not cer-
tain if the pronounced advantage would persist also 
during further, older development phases, or is it ac-
cumulated and evident only during the first competi-
tion phase and then gradually wears out. 

Several studies conducted on traditional coppice 
systems provide an insight into the changes in struc-
ture and function of over-mature coppice (Corcuera et 
al., 2006). Age dependent responses to climatic stress, 
which altered the wood anatomy and survival of Pyr-
enean oak coppiced trees in the Mediterranean basin 
(Corcuera et al., 2006) showed, that over-mature cop-
pice was more vulnerable to climatic stress and xylem 
cavitation owing to the lower proportion of latewood 
vessels, known to be less vulnerable to embolism.

 Drought susceptibility increased also in coppices 
of Populus deltoides, grown under elevated CO2 con-
ditions, which were also more susceptible to xylem 
cavitation, displaying lower wood densities coupled 
with high stomatal densities (Bobich et al., 2010).

Direct impacts on tree physiology (changes oc-
curring shortly after cutting) have been detected in 
in situ and ex situ experiments on coppice. An ex-
perimental study, which simulated a 15% reduction 
in rainfall in thinned and unmanaged Mediterra-
nean mixed coppice of Q. ilex and Quercus cerrioides 
in Spain, found differences on species response to 
drought (Cotillas et al., 2009). Thinning essentially 
involved the reintroduction of the coppice selection 
system, which was historically common in the area. 
Only the deciduous Q. cerrioides suffered decreases in 
relative height growth rate with reduced rainfall.

Even if the recruitment of new individuals from 
seeds is from the productive point not questionable, 
their importance increases when the potential decay 
or abandonment of these forests and their genetic di-
versity is under question. Some authors (Floret et al., 
1992; Ducrey, 1992) state, that perseverance of indi-
viduals by the sprouting mechanism might cause the 
eventual genetic senescence and decrease in produc-
tivity of coppices. As the coppices have been applied 
on the sites with harsh site conditions, especially 
where drought represented the limiting survival as-
pect, several researchers (Ranger & Bonneau, 1986; 
Ranger & Nys, 1996) linked coppicing with the risks 
of the soil environment degradation, reduction in 
soil fertility and production potential with increased 
use of nutrients, loss of fertility and loss of organ-
ic matter. The rate of potential degradation depends 
also on the mineral strength of the site and duration 
of coppicing, with long-term reduction of soil fertil-
ity and thus the production and stability of the for-
est ecosystem being the consequence (Kupec et al., 
2015). However, the beneficial effects of restoration 
coppicing are not guaranteed. When reintroduced, 
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coppicing can pose threats to biodiversity by enhanc-
ing the spread of ruderal species of native origin and 
even the invasion of aliens (Vild et al., 2013).

Conclusions 

In presented study performance of different light 
categories of standards and coppices sessile oaks 
were observed. The performance of coppices over-
passed the maximal assimilation in open light cat-
egories during both favourable and drought condi-
tions, while maximal quantum yield was highest 
in the category of medium light for coppices and 
for standards in category of minimal light. During 
drought performance of coppices was better than in 
standards, showing only slight decrease in quantum 
yield compared to favourable year, due to established 
root system. 

Our first hypothesis that same light categories be-
tween the two systems would show no differences 
proved wrong, as differences between both systems 
were highly different.

Also our second hypothesis that no differences 
would be confirmed between same light categories of 
different systems in drought was not confirmed, as 
differences were highly significant.

 Our study confirmed advantage of coppiced ses-
sile oaks over standards which may be beneficial on 
extreme sites and reduced water availability, where 
continuous forest cover is required. However, such 
conclusions should be considered with reservation, 
as we believe that advantage might decrease in time. 
Further comparisons would be required to compare 
responses in time and define, when such response 
abilities of both systems would become equal. 
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