PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 72 | 08 |

Tytuł artykułu

Znaczenie cytokin prozapalnych i czynników wzrostu w regeneracji mięśni szkieletowych

Warianty tytułu

EN
Role of proinflammatory cytokines and growth factors in skeletal muscle regeneration

Języki publikacji

PL

Abstrakty

EN
Skeletal muscle healing after injury can be divided into three distinct but overlapping phases. The destruction phase is characterized by rupture followed by necrosis of muscle fibers, formation of hematoma and inflammatory reaction. During the repair phase a necrotic tissue is phagocyted by macrophages, muscle fibers are regenerating and connective tissue scars are formed. The remodeling phase concerns the period when regenerating muscle fibers mature, scar contraction and reorganization occurs and the muscle recovers its functional efficiency. Proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and growth factors (FGF, IGF, TGF-β, HGF) play a critical role in all phases of muscle repair. Moreover, chemokines expressed at early stages of myogenesis can regulate the survival and proliferation of myoblasts. Chemokines expressed in vivo in muscle cells can directly influence myogenesis, but can also act in a paracrine manner by recruiting the immune cells (macrophages) to injured skeletal muscles, which is crucial for the regeneration process. Identification of molecules regulating myogenesis, like cytokines, chemokines and growth factors, contributes to the exploration of molecular mechanisms that can improve muscle regeneration after injury, diseases, surgery and increase the effectiveness of cell transplantation.

Wydawca

-

Rocznik

Tom

72

Numer

08

Opis fizyczny

s.472-478,rys.,bibliogr

Twórcy

autor
  • Katedra Nauk Fizjologicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
  • Katedra Nauk Fizjologicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa

Bibliografia

  • Arnold L., Henry A., Poron F., Baba-Amer Y., van Rooijen N., Plonquet A., Gherardi R. K., Chazaud B.: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 2007, 204, 1057-1069.
  • Bae G. U., Gaio U., Yang Y. J., Lee H. J., Kang J. S., Krauss R. S.: Regulation of myoblast motility and fusion by the CXCR4-associated sialomucin, CD164. J. Biol. Chem. 2008, 283, 8301-8309.
  • Baroncelli A. B., Abellonio F., Pagano T. B., Esposito I., Peirone B., Papparella S., Paciello O.: Muscular dystrophy in a dog resembling human becker muscular dystrophy. J. Comp. Pathol. 2014, 150, 429-433.
  • Butterfield T. A., Best T. M., Merrick M. A.: The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J. Athl. Train. 2006, 41, 457-465.
  • Cantini M., Massimino M. L., Rapizzi E., Rossini K., Catani C., Dalla Libera L., Carraro U.: Human satellite cell proliferation in vitro is regulated by autocrine secretion of IL-6 stimulated by a soluble factor(s) released by activated monocytes. Biochem. Biophys. Res. Commun. 1995, 216, 49-53.
  • Chargé S. B., Rudnicki M. A.: Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 2004, 84, 209-238.
  • Chazaud B., Brigitte M., Yacoub-Youssef H., Arnold L., Gherardi R., Sonnet C., Lafuste P., Chretien F.: Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exerc. Sport Sci. Rev. 2009, 37, 18-22.
  • Chong S. W., Nguyet L. M., Jiang Y. J., Korzh V.: The chemokine Sdf-1 and its receptor Cxcr4 are required for formation of muscle in zebrafish. BMC Dev. Biol. 2007, 7, 54.
  • Chung K. Y., Johnson B. J.: Application of cellular mechanisms to growth and development of food producing animals. J. Anim. Sci. 2008, 86, E226-E235.
  • Ciciliot S., Schiaffino S.: Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr. Pharm. Des. 2010, 16, 906-914.
  • Civatte M., Bartoli C., Schleinitz N., Chetaille B., Pellissier J. F., Figarella-Branger D.: Expression of the beta chemokines CCL3, CCL4, CCL5 and their receptors in idiopathic inflammatory myopathies. Neuropathol. Appl. Neurobiol. 2005, 31, 70-79.
  • Contreras-Shannon V., Ochoa O., Reyes-Reyna S. M., Sun D., Michalek J. E., Kuziel W. A., McManus L. M., Shireman P. K.: Fat accumulation with altered inflammation and regeneration in skeletal muscle of CCR2–/– mice following ischemic injury. Am. J. Physiol. Cell Physiol. 2007, 292, C953-C967.
  • Cowan J., Macdessi J., Stark A., Morgan G.: Incidence of Duchenne muscular dystrophy in New South Wales and Australian Capital Territory. J. Med. Genet. 1980, 17, 245-249.
  • Cutroneo K. R.: TGF-beta-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. Wound Repair Regen. 2007, 15, S54-S60.
  • Darmani H., Crossan J., McLellan S. D., Meek D., Adam C.: Expression of nitric oxide synthase and transforming growth factor-beta in crush-injured tendon and synovium. Mediators Inflamm. 2004, 13, 299-305.
  • Elgawish A., Glomb M., Friedlander M., Monnier V. M.: Involvement of hydrogen peroxide in collagen cross-linking by high glucose in vitro and in vivo. J. Biol. Chem. 1996, 271, 12964-12971.
  • Filippin L. I., Moreira A. J., Marroni N. P., Xavier R. M.: Nitric oxide and repair of skeletal muscle injury. Nitric Oxide. 2009, 21, 157-163.
  • Fu X., Wang H., Hu P.: Stem cell activation in skeletal muscle regeneration. Cell Mol. Life Sci. 2015, 72, 1663-1677.
  • Gaiad T. P., Araujo K. P., Serrão J. C., Miglino M. A., Ambrósio C. E.: Motor physical therapy affects muscle collagen type I and decreases gait speed in dystrophin-deficient dogs. PLoS One. 2014, 9, e93500.
  • Ge Y., Waldemer R. J., Nalluri R., Nuzzi P. D., Chen J.: RNAi screen reveals potentially novel role of cytokines in myoblast differentiation. PLoS One. 2013, 8, e68068.
  • Grabiec K., Tokarska J., Milewska M., Błaszczyk M., Gajewska M., Grzelkowska-Kowalczyk K.: Interleukin-1beta stimulates early myogenesis of mouse C2C12 myoblasts: the impact on myogenic regulatory factors, extracellular matrix components, IGF binding proteins and protein kinases. Pol. J. Vet. Sci. 2013, 16, 255-264.
  • Grefte S., Kuijpers-Jagtman A. M., Torensma R., Von den Hoff J. W.: Skeletal muscle development and regeneration. Stem Cells Dev. 2007, 16, 857-868.
  • Griffin C. A., Apponi L. H., Long K. K., Pavlath G. K.: Chemokine expression and control of muscle cell migration during myogenesis. J. Cell Sci. 2010, 123, 3052-3060.
  • Grzelkowska-Kowalczyk K., Grabiec K., Tokarska J., Gajewska M., Błaszczyk M., Milewska M.: Insulin-like growth factor-I increases laminin, integrin subunits and metalloprotease ADAM12 in mouse myoblasts. Folia Biol.- Krakow 2015, 63, 241-247.
  • Grzelkowska-Kowalczyk K., Wicik Z., Majewska A., Tokarska J., Grabiec K., Kozłowski M., Milewska M., Błaszczyk M.: Transcriptional regulation of important cellular processes in skeletal myogenesis through interferon-γ. J. Interferon Cytokine Res. 2015, 35, 89-99.
  • Huard J., Gates C.: Management of skeletal muscle injuries in military personnel. Oper. Tech. Sports Med. 2005, 13, 247-256.
  • Huard J., Li Y., Fu F. H.: Muscle injuries and repair: current trends in research. J. Bone Joint Surg. Am. 2002, 84-A, 822-832.
  • Järvinen T. A., Järvinen M., Kalimo H.: Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J. 2014, 3, 337-345.
  • Johnson B. J., Halstead N., White M. E., Hathaway M. R., DiCostanzo A., Dayton W. R.: Activation state of muscle satellite cells isolated from steers implanted with a combined trenbolone acetate and estradiol implant. J. Anim. Sci. 1998, 76, 2779-2786.
  • Kamanga-Sollo E., Pampusch M. S., Xi G., White M. E., Hathaway M. R., Dayton W. R.: IGF-I mRNA levels in bovine satellite cell cultures: effects of fusion and anabolic steroid treatment. J. Cell. Physiol. 2004, 201, 181-189.
  • Kaplanski G., Marin V., Montero-Julian F., Mantovani A., Farnarier C.: IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 2003, 24, 25-29.
  • Karalaki M., Fili S., Philippou A., Koutsilieris M.: Muscle regeneration: cellular and molecular events. In Vivo 2009, 23, 779-796.
  • Kim C. H.: The greater chemotactic network for lymphocyte trafficking: chemokines and beyond. Curr. Opin. Hematol. 2005, 12, 298-304.
  • Kornegay J. N., Bogan J. R., Bogan D. J., Childers M. K., Li J., Nghiem P., Detwiler D. A., Larsen C. A., Grange R. W., Bhavaraju-Sanka R. K., Tou S., Keene B. P., Howard J. F. Jr, Wang J., Fan Z., Schatzberg S. J., Styner M. A., Flanigan K. M., Xiao X., Hoffman E. P.: Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm. Genome 2012, 23, 85-108.
  • Kuttappan V. A., Shivaprasad H. L., Shaw D. P., Valentine B. A., Hargis B. M., Clark F. D., McKee S. R., Owens C. M.: Pathological changes associated with white striping in broiler breast muscles. Poult. Sci. 2013, 92, 331-338.
  • Li Y., Foster W., Deasy B. M., Chan Y., Prisk V., Tang Y., Cummins J., Huard J.: Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am. J. Pathol. 2004, 164, 1007-1019.
  • Lobley G. E., Milne V., Lovie J. M., Reeds P. J., Pennie K.: Whole body and tissue protein synthesis in cattle. Br. J. Nutr. 1980, 43, 491-502.
  • Lu H., Huang D., Saederup N., Charo I. F., Ransohoff R. M., Zhou L.: Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 2011, 25, 358-369.
  • Marcellin-Little D. J., Levine D.: Principles and application of range of motion and stretching in companion animals. Vet. Clin. North Am. Small Anim. Pract. 2015, 45, 57-72.
  • Miyazaki H., Patel V., Wang H., Edmunds R. K., Gutkind J. S., Yeudall W. A.: Down-regulation of CXCL5 inhibits squamous carcinogenesis. Cancer Res. 2006, 66, 4279-4284.
  • Motohashi N., Uezumi A., Yada E., Fukada S., Fukushima K., Imaizumi K., Miyagoe-Suzuki Y., Takeda S.: Muscle CD31(–) CD45(–) side population cells promote muscle regeneration by stimulating proliferation and migration of myoblasts. Am. J. Pathol. 2008, 173, 781-791.
  • Nicholas J., Voss J. G., Tsuji J., Fulkerson N. D., Soulakova J., Schneider B. S.: Time course of chemokine expression and leukocyte infiltration after acute skeletal muscle injury in mice. Innate. Immun. 2015, 21, 266-274.
  • Nishimura D., Sakai H., Sato T., Sato F., Nishimura S., Toyama-Sorimachi N., Bartsch J. W., Sehara-Fujisawa A.: Roles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration. Mech. Dev. 2015, 135, 58-67.
  • Oktyabrsky O. N., Smirnova G. V.: Redox regulation of cellular functions. Biochemistry (Mosc). 2007, 72, 132-145.
  • Petracci M., Cavani C.: Muscle growth and poultry meat quality issues. Nutrients 2012, 4, 1-12.
  • Pierce A. P., de Waal E., McManus L. M., Shireman P. K., Chaudhuri A. R.: Oxidation and structural perturbation of redox-sensitive enzymes in injured skeletal muscle. Free Radic. Biol. Med. 2007, 43, 1584-1593.
  • Prior T. W., Bridgeman S. J.: Experience and strategy for the molecular testing of Duchenne muscular dystrophy. J. Mol. Diagn. 2005, 7, 317-326.
  • Rovere R. M. La, Quattrocelli M., Pietrangelo T., Di Filippo E. S., Maccatrozzo L., Cassano M., Mascarello F., Barthélémy I., Blot S., Sampaolesi M., Fulle S.: Myogenic potential of canine craniofacial satellite cells. Front Aging Neurosci. 2014, 6, 90.
  • Rudnicki M. A., Le Grand F., McKinnell I., Kuang S.: The molecular regulation of muscle stem cell function. Cold Spring Harb. Symp. Quant. Biol. 2008, 73, 323-331.
  • Schmalbruch H.: The morphology of regeneration of skeletal muscles in the rat. Tissue Cell. 1976, 8, 673-692.
  • Sen C. K.: The general case for redox control in wound repair. Wound Repair Regen. 2003, 11, 431-438.
  • Sihvo H. K., Immonen K., Puolanne E.: Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. Vet. Pathol. 2014, 51, 619-623.
  • Smith K. R., Duckett S. K., Azain M. J., Sonon R. N. Jr., Pringle T. D.: The effect of anabolic implants on intramuscular lipid deposition in finished beef cattle. J. Anim. Sci. 2007, 85, 430-440.
  • Soneja A., Drews M., Malinski T.: Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol. Rep. 2005, 57, 108-119.
  • Stebler J., Spieler D., Slanchev K., Molyneaux K. A., Richter U., Cojocaru V., Tarabykin V., Wylie C., Kessel M., Raz E.: Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Dev. Biol. 2004, 272, 351-361.
  • Sun D., Martinez C. O., Ochoa O., Ruiz-Willhite L., Bonilla J. R., Centonze V. E., Waite L. L., Michalek J. E., McManus L. M., Shireman P. K.: Bone marrow-derived cell regulation of skeletal muscle regeneration. FASEB J. 2009, 23, 382-395.
  • Tatsumi R.: Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells. Anim. Sci. J. 2010, 81, 11-20.
  • Tidball J. G.: Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R345-R353.
  • Tidball J. G.: Mechanisms of muscle injury, repair, and regeneration. Compr. Physiol. 2011, 1, 2029-2062.
  • Toumi H., F’guyer S., Best T. M.: The role of neutrophils in injury and repair following muscle stretch. J. Anat. 2006, 208, 459-470.
  • Tsujinaka T., Ebisui C., Fujita J., Kishibuchi M., Morimoto T., Ogawa A., Katsume A., Ohsugi Y., Kominami E., Monden M.: Muscle undergoes atrophy in association with increase of lysosomal cathepsin activity in interleukin-6 transgenic mouse. Biochem. Biophys. Res. Commun. 1995, 207, 168-174.
  • Urso M. L.: Anti-inflammatory interventions and skeletal muscle injury: benefit or detriment? J. Appl. Physiol. 2013, 115, 920-928.
  • Vasyutina E., Stebler J., Brand-Saberi B., Schulz S., Raz E., Birchmeier C.: CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev. 2005, 19, 2187-2198.
  • Viola A., Luster A. D.: Chemokines and their receptors: drug targets in immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 171-197.
  • Warren G. L., Hulderman T., Mishra D., Gao X., Millecchia L., O’Farrell L., Kuziel W. A., Simeonova P. P.: Chemokine receptor CCR2 involvement in skeletal muscle regeneration. FASEB J. 2005, 19, 413-415.
  • Wieteska-Skrzeczyńska W., Grzelkowska-Kowalczyk K., Tokarska J., Grabiec K.: Growth factor and cytokine interactions in myogenesis. Part I. The effect of TNF-alpha and IFN-gamma on IGF-I-dependent differentiation in mouse C2C12 myogenic cells. Pol. J. Vet. Sci. 2011, 14, 417-424.
  • Yusuf F., Rehimi R., Moroşan-Puopolo G., Dai F., Zhang X., Brand-Saberi B.: Inhibitors of CXCR4 affect the migration and fate of CXCR4+ progenitors in the developing limb of chick embryos. Dev. Dyn. 2006, 235, 3007-3015.
  • Ziche M., Morbidelli L.: Nitric oxide and angiogenesis. J. Neurooncol. 2000, 50, 139-148.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-724c5963-444e-457d-b1e0-1a41ab0f2119
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.